59.5 Problem number 189

\[ \int \frac {a+i a \tan (c+d x)}{\sqrt {e \sec (c+d x)}} \, dx \]

Optimal antiderivative \[ -\frac {2 i a}{d \sqrt {e \sec \left (d x +c \right )}}+\frac {2 a \sqrt {\frac {\cos \left (d x +c \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sin \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) d \sqrt {\cos \left (d x +c \right )}\, \sqrt {e \sec \left (d x +c \right )}} \]

command

integrate((a+I*a*tan(d*x+c))/(e*sec(d*x+c))^(1/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ \frac {2 i \, \sqrt {2} a e^{\left (-\frac {1}{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right )}{d} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ \frac {\sqrt {2} {\left (-2 i \, a e^{\left (2 i \, d x + 2 i \, c\right )} - 2 i \, a\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + {\left (d e e^{\left (i \, d x + i \, c\right )} - d e\right )} {\rm integral}\left (\frac {\sqrt {2} {\left (-i \, a e^{\left (2 i \, d x + 2 i \, c\right )} - 2 i \, a e^{\left (i \, d x + i \, c\right )} - i \, a\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{d e e^{\left (3 i \, d x + 3 i \, c\right )} - 2 \, d e e^{\left (2 i \, d x + 2 i \, c\right )} + d e e^{\left (i \, d x + i \, c\right )}}, x\right )}{d e e^{\left (i \, d x + i \, c\right )} - d e} \]