107.2 Problem number 48

\[ \int e^{\text {sech}^{-1}\left (a x^2\right )} x^4 \, dx \]

Optimal antiderivative \[ \frac {2 x^{3}}{15 a}+\frac {\left (\frac {1}{a \,x^{2}}+\sqrt {\frac {1}{a \,x^{2}}-1}\, \sqrt {\frac {1}{a \,x^{2}}+1}\right ) x^{5}}{5}+\frac {2 \EllipticE \left (x \sqrt {a}, i\right ) \sqrt {\frac {1}{a \,x^{2}+1}}\, \sqrt {a \,x^{2}+1}}{5 a^{\frac {5}{2}}}-\frac {2 \EllipticF \left (x \sqrt {a}, i\right ) \sqrt {\frac {1}{a \,x^{2}+1}}\, \sqrt {a \,x^{2}+1}}{5 a^{\frac {5}{2}}} \]

command

integrate((1/a/x^2+(1/a/x^2-1)^(1/2)*(1/a/x^2+1)^(1/2))*x^4,x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ \frac {5 \, a x^{3} + 3 \, {\left (a^{2} x^{5} - 2 \, x\right )} \sqrt {\frac {a x^{2} + 1}{a x^{2}}} \sqrt {-\frac {a x^{2} - 1}{a x^{2}}}}{15 \, a^{2}} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ {\rm integral}\left (\frac {a x^{4} \sqrt {\frac {a x^{2} + 1}{a x^{2}}} \sqrt {-\frac {a x^{2} - 1}{a x^{2}}} + x^{2}}{a}, x\right ) \]