44.75 Problem number 335

\[ \int \cot ^2(c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx \]

Optimal antiderivative \[ \frac {13 a^{\frac {3}{2}} \arctanh \left (\frac {\cos \left (d x +c \right ) \sqrt {a}}{\sqrt {a +a \sin \left (d x +c \right )}}\right )}{8 d}-\frac {\cot \left (d x +c \right ) \left (\csc ^{2}\left (d x +c \right )\right ) \left (a +a \sin \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d}+\frac {5 a^{2} \cot \left (d x +c \right )}{24 d \sqrt {a +a \sin \left (d x +c \right )}}-\frac {a \cot \left (d x +c \right ) \csc \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}}{4 d} \]

command

integrate(cos(d*x+c)^2*csc(d*x+c)^4*(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \frac {\sqrt {2} {\left (39 \, \sqrt {2} a \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) - \frac {4 \, {\left (36 \, a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 80 \, a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 39 \, a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )} \sqrt {a}}{96 \, d} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \text {Timed out} \]________________________________________________________________________________________