46.86 Problem number 166

\[ \int \frac {(a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{3/2}} \, dx \]

Optimal antiderivative \[ \frac {\left (A +B \right ) \cos \left (f x +e \right ) \left (a +a \sin \left (f x +e \right )\right )^{\frac {7}{2}}}{2 f \left (c -c \sin \left (f x +e \right )\right )^{\frac {3}{2}}}+\frac {a^{2} \left (3 A +5 B \right ) \cos \left (f x +e \right ) \left (a +a \sin \left (f x +e \right )\right )^{\frac {3}{2}}}{2 c f \sqrt {c -c \sin \left (f x +e \right )}}+\frac {a \left (3 A +5 B \right ) \cos \left (f x +e \right ) \left (a +a \sin \left (f x +e \right )\right )^{\frac {5}{2}}}{6 c f \sqrt {c -c \sin \left (f x +e \right )}}+\frac {4 a^{4} \left (3 A +5 B \right ) \cos \left (f x +e \right ) \ln \left (1-\sin \left (f x +e \right )\right )}{c f \sqrt {a +a \sin \left (f x +e \right )}\, \sqrt {c -c \sin \left (f x +e \right )}}+\frac {2 a^{3} \left (3 A +5 B \right ) \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}}{c f \sqrt {c -c \sin \left (f x +e \right )}} \]

command

integrate((a+a*sin(f*x+e))^(7/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ -\frac {\sqrt {2} \sqrt {a} {\left (\frac {6 \, {\left (3 \, \sqrt {2} A a^{3} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 5 \, \sqrt {2} B a^{3} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \log \left (-\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}{c^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {6 \, {\left (\sqrt {2} A a^{3} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + \sqrt {2} B a^{3} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )} c^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {\sqrt {2} {\left (4 \, B a^{3} c^{\frac {9}{2}} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 3 \, A a^{3} c^{\frac {9}{2}} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 9 \, B a^{3} c^{\frac {9}{2}} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 12 \, A a^{3} c^{\frac {9}{2}} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 24 \, B a^{3} c^{\frac {9}{2}} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )}}{c^{6} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}\right )}}{3 \, f} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \text {Timed out} \]________________________________________________________________________________________