46.135 Problem number 304

\[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx \]

Optimal antiderivative \[ -\frac {2 a B \cos \left (f x +e \right ) \left (a +a \sin \left (f x +e \right )\right )^{\frac {3}{2}}}{5 d f}+\frac {2 a^{\frac {5}{2}} \left (c -d \right )^{2} \left (-A d +B c \right ) \arctanh \left (\frac {\cos \left (f x +e \right ) \sqrt {a}\, \sqrt {d}}{\sqrt {c +d}\, \sqrt {a +a \sin \left (f x +e \right )}}\right )}{d^{\frac {7}{2}} f \sqrt {c +d}}+\frac {2 a^{3} \left (5 A \left (3 c -7 d \right ) d -B \left (15 c^{2}-35 c d +32 d^{2}\right )\right ) \cos \left (f x +e \right )}{15 d^{3} f \sqrt {a +a \sin \left (f x +e \right )}}+\frac {2 a^{2} \left (-5 A d +5 B c -8 B d \right ) \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}}{15 d^{2} f} \]

command

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))/(c+d*sin(f*x+e)),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \frac {\sqrt {2} \sqrt {a} {\left (\frac {15 \, \sqrt {2} {\left (B a^{2} c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - A a^{2} c^{2} d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 2 \, B a^{2} c^{2} d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 2 \, A a^{2} c d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + B a^{2} c d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - A a^{2} d^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \arctan \left (\frac {\sqrt {2} d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c d - d^{2}}}\right )}{\sqrt {-c d - d^{2}} d^{3}} + \frac {2 \, {\left (12 \, B a^{2} d^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{5} + 10 \, B a^{2} c d^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 10 \, A a^{2} d^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 40 \, B a^{2} d^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 15 \, B a^{2} c^{2} d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 15 \, A a^{2} c d^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 45 \, B a^{2} c d^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 45 \, A a^{2} d^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 60 \, B a^{2} d^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{d^{5}}\right )}}{15 \, f} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \text {Timed out} \]________________________________________________________________________________________