75.110 Problem number 198

\[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))^2}{(c+d \sec (e+f x))^2} \, dx \]

Optimal antiderivative \[ \frac {a^{2} \arctanh \left (\sin \left (f x +e \right )\right )}{d^{2} f}-\frac {2 a^{2} \left (c +2 d \right ) \arctanh \left (\frac {\sqrt {c -d}\, \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{\sqrt {c +d}}\right ) \sqrt {c -d}}{d^{2} \left (c +d \right )^{\frac {3}{2}} f}-\frac {a^{2} \left (c -d \right ) \tan \left (f x +e \right )}{d \left (c +d \right ) f \left (c +d \sec \left (f x +e \right )\right )} \]

command

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c+d*sec(f*x+e))^2,x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \frac {\frac {a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1 \right |}\right )}{d^{2}} - \frac {a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1 \right |}\right )}{d^{2}} + \frac {2 \, {\left (a^{2} c^{2} + a^{2} c d - 2 \, a^{2} d^{2}\right )} {\left (\pi \left \lfloor \frac {f x + e}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, c - 2 \, d\right ) + \arctan \left (\frac {c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c^{2} + d^{2}}}\right )\right )}}{{\left (c d^{2} + d^{3}\right )} \sqrt {-c^{2} + d^{2}}} + \frac {2 \, {\left (a^{2} c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - a^{2} d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{{\left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c - d\right )} {\left (c d + d^{2}\right )}}}{f} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \text {Exception raised: NotImplementedError} \]________________________________________________________________________________________