24.382 Problem number 2115

\[ \int \frac {\left (1+x^4\right ) \sqrt {1+\sqrt {1+x^2}}}{-1+x^4} \, dx \]

Optimal antiderivative \[ \frac {4 x}{3 \sqrt {1+\sqrt {x^{2}+1}}}+\frac {2 x \sqrt {x^{2}+1}}{3 \sqrt {1+\sqrt {x^{2}+1}}}-2 \arctan \left (\frac {x}{\sqrt {1+\sqrt {x^{2}+1}}}\right )+\sqrt {\sqrt {2}-1}\, \arctan \left (\frac {x}{\sqrt {1+\sqrt {2}}\, \sqrt {1+\sqrt {x^{2}+1}}}\right )-\sqrt {1+\sqrt {2}}\, \arctanh \left (\frac {x}{\sqrt {\sqrt {2}-1}\, \sqrt {1+\sqrt {x^{2}+1}}}\right ) \]

command

Integrate[((1 + x^4)*Sqrt[1 + Sqrt[1 + x^2]])/(-1 + x^4),x]

Mathematica 13.1 output

\[ \frac {4 x}{3 \sqrt {1+\sqrt {1+x^2}}}+\frac {2 x \sqrt {1+x^2}}{3 \sqrt {1+\sqrt {1+x^2}}}-2 \text {ArcTan}\left (\frac {x}{\sqrt {1+\sqrt {1+x^2}}}\right )+\sqrt {-1+\sqrt {2}} \text {ArcTan}\left (\frac {\sqrt {-1+\sqrt {2}} x}{\sqrt {1+\sqrt {1+x^2}}}\right )-\sqrt {1+\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt {1+\sqrt {2}} x}{\sqrt {1+\sqrt {1+x^2}}}\right ) \]

Mathematica 12.3 output

\[ \int \frac {\left (1+x^4\right ) \sqrt {1+\sqrt {1+x^2}}}{-1+x^4} \, dx \]________________________________________________________________________________________