24.551 Problem number 2680

\[ \int \frac {\left (-1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx \]

Optimal antiderivative \[ \frac {x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{2}+\frac {\arctan \left (\frac {\sqrt {2}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right ) \sqrt {2}}{2}-2 \sqrt {\sqrt {2}-1}\, \arctan \left (\frac {\sqrt {2+2 \sqrt {2}}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right )-2 \arctanh \left (\frac {\sqrt {2}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right ) \sqrt {2}+2 \sqrt {1+\sqrt {2}}\, \arctanh \left (\frac {\sqrt {-2+2 \sqrt {2}}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right ) \]

command

Integrate[((-1 + x^2)*Sqrt[x^2 + Sqrt[1 + x^4]])/(1 + x^2),x]

Mathematica 13.1 output

\[ \frac {1}{2} \left (x \sqrt {x^2+\sqrt {1+x^4}}+\sqrt {2} \text {ArcTan}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}\right )-4 \sqrt {-1+\sqrt {2}} \text {ArcTan}\left (\frac {\sqrt {\frac {1}{2}+\frac {1}{\sqrt {2}}} \left (-1+x^2+\sqrt {1+x^4}\right )}{x \sqrt {x^2+\sqrt {1+x^4}}}\right )-4 \sqrt {2} \tanh ^{-1}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}\right )+4 \sqrt {1+\sqrt {2}} \tanh ^{-1}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}\right )\right ) \]

Mathematica 12.3 output

\[ \int \frac {\left (-1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx \]________________________________________________________________________________________