24.557 Problem number 2701

\[ \int \frac {\sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx \]

Optimal antiderivative \[ \frac {x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{2}-\frac {\arctan \left (\frac {\sqrt {2}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right ) \sqrt {2}}{2}+\sqrt {-2+2 \sqrt {2}}\, \arctan \left (\frac {\sqrt {2+2 \sqrt {2}}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right )-\arctanh \left (\frac {\sqrt {2}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right ) \sqrt {2}+\sqrt {2+2 \sqrt {2}}\, \arctanh \left (\frac {\sqrt {-2+2 \sqrt {2}}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right ) \]

command

Integrate[(Sqrt[1 + x^4]*Sqrt[x^2 + Sqrt[1 + x^4]])/(1 + x^2),x]

Mathematica 13.1 output

\[ \frac {1}{2} x \sqrt {x^2+\sqrt {1+x^4}}-\frac {\text {ArcTan}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}\right )}{\sqrt {2}}+\sqrt {2 \left (-1+\sqrt {2}\right )} \text {ArcTan}\left (\frac {\sqrt {\frac {1}{2}+\frac {1}{\sqrt {2}}} \left (-1+x^2+\sqrt {1+x^4}\right )}{x \sqrt {x^2+\sqrt {1+x^4}}}\right )-\sqrt {2} \tanh ^{-1}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}\right )+\sqrt {2 \left (1+\sqrt {2}\right )} \tanh ^{-1}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}\right ) \]

Mathematica 12.3 output

\[ \int \frac {\sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx \]________________________________________________________________________________________