24.585 Problem number 2804

\[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\left (-1+x^4\right ) \sqrt {1+x^4}} \, dx \]

Optimal antiderivative \[ \frac {\sqrt {-2+2 \sqrt {2}}\, \arctan \left (\frac {\sqrt {-2+2 \sqrt {2}}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right )}{4}-\frac {\sqrt {-2+2 \sqrt {2}}\, \arctan \left (\frac {\sqrt {2+2 \sqrt {2}}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right )}{4}-\frac {\sqrt {2+2 \sqrt {2}}\, \arctanh \left (\frac {\sqrt {-2+2 \sqrt {2}}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right )}{4}-\frac {\sqrt {2+2 \sqrt {2}}\, \arctanh \left (\frac {\sqrt {2+2 \sqrt {2}}\, x \sqrt {x^{2}+\sqrt {x^{4}+1}}}{1+x^{2}+\sqrt {x^{4}+1}}\right )}{4} \]

command

Integrate[Sqrt[x^2 + Sqrt[1 + x^4]]/((-1 + x^4)*Sqrt[1 + x^4]),x]

Mathematica 13.1 output

\[ \frac {\sqrt {-1+\sqrt {2}} \left (-\text {ArcTan}\left (\frac {\sqrt {\frac {1}{2}+\frac {1}{\sqrt {2}}} \left (-1+x^2+\sqrt {1+x^4}\right )}{x \sqrt {x^2+\sqrt {1+x^4}}}\right )+\text {ArcTan}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}\right )\right )-\sqrt {1+\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt {\frac {1}{2}+\frac {1}{\sqrt {2}}} \left (-1+x^2+\sqrt {1+x^4}\right )}{x \sqrt {x^2+\sqrt {1+x^4}}}\right )-\sqrt {1+\sqrt {2}} \tanh ^{-1}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}\right )}{2 \sqrt {2}} \]

Mathematica 12.3 output

\[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{\left (-1+x^4\right ) \sqrt {1+x^4}} \, dx \]________________________________________________________________________________________