24.676 Problem number 3114

\[ \int \frac {\left (1+x^2\right )^2 \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\left (1-x^2\right )^2} \, dx \]

Optimal antiderivative \[ \mathit {Unintegrable} \]

command

Integrate[((1 + x^2)^2*Sqrt[x + Sqrt[1 + x^2]]*Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]])/(1 - x^2)^2,x]

Mathematica 13.1 output

\[ \frac {\sqrt {1+\sqrt {x+\sqrt {1+x^2}}} \left (75+24 x-735 x^2+8 x^3-1050 x^4-32 x^5+240 x^6+2 \left (-8-9 x-8 x^2-3 x^3+16 x^4+12 x^5\right ) \sqrt {x+\sqrt {1+x^2}}+2 \sqrt {1+x^2} \left (4-60 x+12 x^2-585 x^3-16 x^4+120 x^5+\left (-3-16 x-9 x^2+16 x^3+12 x^4\right ) \sqrt {x+\sqrt {1+x^2}}\right )\right )}{105 \left (-1+x^2\right ) \left (x+\sqrt {1+x^2}\right )^{5/2}}-\tanh ^{-1}\left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}\right )+\text {RootSum}\left [-2+4 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {5 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )-4 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^2+2 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^4}{2 \text {$\#$1}-3 \text {$\#$1}^3+\text {$\#$1}^5}\&\right ]-\frac {1}{4} \text {RootSum}\left [-2+4 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )+7 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^2-\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^4+\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^6}{2 \text {$\#$1}^3-3 \text {$\#$1}^5+\text {$\#$1}^7}\&\right ]+\text {RootSum}\left [2-8 \text {$\#$1}^2+8 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {-\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}-4 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^3+2 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^5}{-2+4 \text {$\#$1}^2-3 \text {$\#$1}^4+\text {$\#$1}^6}\&\right ]-\frac {1}{4} \text {RootSum}\left [2-8 \text {$\#$1}^2+8 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )-9 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^2-\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^4+\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^6}{-2 \text {$\#$1}+4 \text {$\#$1}^3-3 \text {$\#$1}^5+\text {$\#$1}^7}\&\right ] \]

Mathematica 12.3 output

\[ \int \frac {\left (1+x^2\right )^2 \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\left (1-x^2\right )^2} \, dx \]________________________________________________________________________________________