This report gives the result of running the computer algebra independent integration problems.
The listing of the problems used by this report are
The Mathematica/Rubi format file above can be read into Mathematica using the following commands
SetDirectory[NotebookDirectory[]] (*where the above .m file was save*) lst=First@ReadList["CAS_integration_tests_2022_Mathematica_format.m",Expression]; Length[lst]
lst[[1]] will be the first integrand,var and lst[[2]] will be the second one and so on.
The Rubi test suite files were downloaded from rulebasedintegration.org.
The current number of problems in this test suite is [85865].
The following are the CAS systems tested:
Maxima and Fricas and Giac are called using Sagemath. This was done using Sagemath integrate command by changing the name of the algorithm to use the different CAS systems.
Sympy was called directly from Python.
Important note: A number of problems in this test suite have no antiderivative in closed form. This means the antiderivative of these integrals can not be expressed in terms of elementary, special functions or Hypergeometric2F1 functions. RootSum and RootOf are not allowed.
If a CAS returns the above integral unevaluated within the time limit, then the result is counted as passed and assigned an A grade.
However, if CAS times out, then it is assigned an F grade even if the integral is not integrable, as this implies CAS could not determine that the integral is not integrable in the time limit.
If a CAS returns an antiderivative to such an integral, it is assigned an A grade automatically and this special result is listed in the introduction section of each individual test report to make it easy to identify as this can be important result to investigate.
The results given in in the table below reflects the above.
System | solved | Failed |
Mathematica | % 97.999 ( 84147 ) | % 2.001 ( 1718 ) |
Rubi | % 94.208 ( 80892 ) | % 5.792 ( 4973 ) |
Maple | % 84.582 ( 72626 ) | % 15.418 ( 13239 ) |
Fricas | % 79.355 ( 68138 ) | % 20.645 ( 17727 ) |
Giac | % 58.609 ( 50325 ) | % 41.391 ( 35540 ) |
Maxima | % 57.048 ( 48984 ) | % 42.952 ( 36881 ) |
Mupad | % 56.256 ( 48304 ) | % 43.744 ( 37561 ) |
Sympy | % 42.09 ( 36141 ) | % 57.91 ( 49724 ) |
The table below gives additional break down of the grading of quality of the antiderivatives generated by each CAS. The grading is given using the letters A,B,C and F with A being the best quality. The grading is accomplished by comparing the antiderivative generated with the optimal antiderivatives included in the test suite. The following table describes the meaning of these grades.
grade |
description |
A |
Integral was solved and antiderivative is optimal in quality and leaf size. |
B |
Integral was solved and antiderivative is optimal in quality but leaf size is larger than twice the optimal antiderivatives leaf size. |
C |
Integral was solved and antiderivative is non-optimal in quality. This can be due to one or more of the following reasons
|
F |
Integral was not solved. Either the integral was returned unevaluated within the time limit, or it timed out, or CAS hanged or crashed or an exception was raised. |
Grading is implemented for all CAS systems in this version except for CAS Mupad where a grade of B is automatically assigned as a place holder for all integrals it completes on time.
The following table summarizes the grading results.
System | % A grade | % B grade | % C grade | % F grade |
Rubi | 91.49 | 1.96 | 0.75 | 5.79 |
Mathematica | 78.62 | 6.22 | 13.13 | 2. |
Maple | 56.45 | 18.49 | 9.64 | 15.42 |
Fricas | 53.91 | 19.57 | 5.87 | 20.65 |
Maxima | 43.72 | 11.7 | 1.63 | 42.95 |
Giac | 42.55 | 15. | 1.07 | 41.39 |
Sympy | 28.64 | 9.85 | 3.6 | 57.91 |
Mupad | 4.13 | 52.12 | 0. | 43.74 |
The following Bar chart is an illustration of the data in the above table.
The figure below compares the CAS systems for each grade level.
The table below summarizes the performance of each CAS system in terms of time used and leaf size of results.
Mean size is the average leaf size produced by the CAS (before any normalization). The Normalized mean is relative to the mean size of the optimal anti-derivative given in the input files.
For example, if CAS has Normalized mean of \(3\), then the mean size of its leaf size is 3 times as large as the mean size of the optimal leaf size.
Median size is value of leaf size where half the values are larger than this and half are smaller (before any normalization). i.e. The Middle value.
Similarly the Normalized median is relative to the median leaf size of the optimal.
For example, if a CAS has Normalized median of \(1.2\), then its median is \(1.2\) as large as the median leaf size of the optimal.
System | Mean time (sec) | Mean size | Normalized mean | Median size | Normalized median |
Rubi | 0.26 | 153.08 | 1.2 | 98. | 1. |
Maxima | 0.52 | 548.38 | 3.89 | 62. | 1.04 |
Giac | 1.54 | 607.21 | 4.54 | 72. | 1.14 |
Fricas | 1.96 | 1055.34 | 6.03 | 96. | 1.29 |
Mathematica | 2.37 | 690.29 | 2.9 | 81. | 0.97 |
Maple | 3.32 | 100610. | 916.3 | 100. | 1.17 |
Mupad | 2.72 | 219.68 | 1.99 | 54. | 1. |
Sympy | 5.21 | 314.21 | 4.18 | 44. | 1.06 |
This section shows how each CAS performed based on the number of rules Rubi needed to solve the same integral.
The maximum number of rules Rubi used to solve an integral was 9.
The above diagrams shows that the precentage of solved intergals decreases as the number of rules increases.
As expected, for integrals that required less rules, CAS systems had more success which indicates the integral was not as hard to solve. As Rubi needed more rules to solve the integral, we see that the solved percentage decreased for most CAS systems which indicates the integral is becoming harder to solve.
Mathematica had the best performance where its percentage remained almost the same as Rubi’s followed by Maple, then Fricas then the other CAS systems followed.
This section shows how each CAS performed based on the number of steps Rubi needed to solve the same integral.
The number of steps can be much higher than the number of rules, as the same rule could be used more than once.
The above diagrams shows that the precentage of solved intergals decreases as the number of steps increases.
As expected, for integrals that required less steps by Rubi, CAS systems had more success which indicates the integral was not as hard to solve. As Rubi needed more steps to solve the integral, the solved percentage decreased for most CAS systems which indicates the integral is becoming harder to solve.
Mathematica had the best performance where its solved percentage remained almost the same as Rubi’s followed by Maple, then Fricas then the other CAS systems followed.
(*basic package to generate some states for Rubi Rules*) (*for summer 2022 CAS integration tests*) (*Nasser M. Abbasi, Version Oct 1, 2022. Written using Mathematica 13.1 version *) (*to use, do the following. *) (* <<CAS` db = CAS`openDB["cas_integration_tests.db"]; CAS`getNumberOfIntegrals[db] CAS`generateRubiStepsStats[db] CAS`generateRubiRulesStats[db] CAS`generateLeafStats[db] CAS`closeDB[db] *) BeginPackage["CAS`"] Unprotect @@ Names["CAS`*"]; ClearAll @@ Names["CAS`*"]; (* public API *) getNumberOfIntegrals::usage = "getNumberOfIntegrals[db] gets number of integrals" openDB::usage = "openDB[folderName] opens the database" closeDB::usage = "closeDB[db] closes the database" generateRubiStepsStats::usage= "generateRubiStepsStats[db] generate stats per rubi steps" generateRubiRulesStats::usage= "generateRubiRulesStats[db] generate stats per rubi rules" generateLeafStats::usage= "generateLeafStats[db] generate histograms for leaf size" (*----------------------------------*) Begin["`Private`"] Needs["DatabaseLink`"] (*----------------------------------*) openDB[fullPath_String]:= Module[{db}, db = Check[OpenSQLConnection[JDBC["SQLite", fullPath]],$Failed]; db ]; (*----------------------------------*) closeDB[db_]:= Module[{},Check[CloseSQLConnection[db],$Failed]]; (*----------------------------------*) getNumberOfIntegrals[db_] := Module[{numberOfIntegrals}, numberOfIntegrals = SQLExecute[db, "SELECT COUNT(*) FROM main;"][[1, 1]]; numberOfIntegrals ]; (*------------------------------------------*) (*Function to generate histogram of leaf size per cas*) getHistogramForLeafSize[casName_String, db_] := Module[{data, binWidth = 40}, data = SQLExecute[db, "SELECT rubi_leafsize FROM main where " <> casName <> "_pass=1;"] // Flatten; Histogram[data, {binWidth}, Frame -> {True, True, False, False}, FrameLabel -> {"Leaf size", "Number of integrals"}, PlotLabel -> Style[casName, Bold], ImageSize -> 300, BaseStyle -> 12] ]; (*----------------------------------*) casSystems = {"rubi", "mma", "maple", "fricas", "giac", "maxima", "sympy", "mupad"}; (*------------------------------------------*) generateRubiStepsStats[db_]:=Module[ {maxNumberOfSteps=20,dataPerStep,m,lbl,data,g,cas,nProblemsForTheseSteps,n}, dataPerStep = Table[ nProblemsForTheseSteps = SQLExecute[db, "SELECT COUNT(*) FROM main where rubi_number_of_steps=" <> ToString@n <> ";"][[1, 1]]; m = SQLExecute[db, "SELECT COUNT(*) FROM main where rubi_number_of_steps=" <> ToString@n <> " and " <> cas <> "_pass=1;"][[1, 1]]; m*100./nProblemsForTheseSteps , {n, 1, maxNumberOfSteps} , {cas, casSystems} ]; data = Transpose@dataPerStep; lbl = LabelStyle -> Directive[Italic, Small, Black]; data = Callout[data[[#]], casSystems[[#]], {1.1*#, Above}, lbl] & /@ Range[Length@casSystems]; g = ListLinePlot[data, GridLines -> {Range[maxNumberOfSteps], Automatic}, GridLinesStyle -> LightGray, ImageSize -> 600, Frame -> {True, True, False, False}, FrameLabel -> {"Rubi number of steps", "% solved problems"}, Axes -> False, (*PlotLegends -> casSystems,*) PlotRange -> {{1, maxNumberOfSteps}, Automatic}, FrameTicks -> {{Automatic, None}, {Range[maxNumberOfSteps], None}}, BaseStyle -> 16 ]; g ]; (*------------------------------------------*) generateRubiRulesStats[db_]:=Module[{maxNumberOfRules=9,m,lbl,data,g,cas,nProblemsForTheseRules,n}, data = Table[ nProblemsForTheseRules = SQLExecute[db, "SELECT COUNT(*) FROM main where rubi_number_of_rules=" <> ToString@n <> ";"][[1, 1]]; m = SQLExecute[db, "SELECT COUNT(*) FROM main where rubi_number_of_rules=" <> ToString@n <> " and " <> cas <> "_pass=1;"][[1, 1]]; m*100./nProblemsForTheseRules, {n, 1, maxNumberOfRules}, {cas, casSystems} ]; data = Transpose@data; lbl = LabelStyle -> Directive[Italic, Small, Black]; data = Callout[data[[#]], casSystems[[#]], {1.1*#, Above}, lbl] & /@ Range[Length@casSystems]; g = ListLinePlot[data, GridLines -> {Range[maxNumberOfRules], Automatic}, GridLinesStyle -> LightGray, ImageSize -> 600, Frame -> {True, True, False, False}, FrameLabel -> {"Rubi number of steps", "% solved problems"}, Axes -> False, (*PlotLegends -> casSystems,*) PlotRange -> {{1, maxNumberOfRules}, Automatic}, FrameTicks -> {{Automatic, None}, {Range[maxNumberOfRules], None}}, BaseStyle -> 16]; g ]; (*----------------------------------*) generateLeafStats[db_]:=Module[{p,g,lbl}, p = getHistogramForLeafSize[#, db] & /@ casSystems; g = Grid[Partition[p, 2], Frame -> All, FrameStyle -> LightGray]; lbl = Style[Column[{"Histogram showing distribution of solved integrals", "based on leaf size using bin width of 40"}], Bold, 16]; g = Labeled[g, lbl, Top]; g ]; (*----------------------------------*) End[]; Protect @@ Names["CAS`*"]; EndPackage[];
This version uses Maple to access to the database. It is a small module. Below is the listing of the source code and link to the driver .mw and the module .mpl
#small Maple module to generate some stats plots for CAS integration tests #by Nasser M. Abbasi,. Version OCt 1, 2022. #Written using Maple 2022 # # To use do #read "CAS_plots.mpl"; #CAS_plots:-openDB("cas_integration_tests.db"); #CAS_plots:-make_number_of_steps_plot(); #CAS_plots:-make_number_of_rules_plot(); #CAS_plots:-closeDB(); # #see CAS_plots.mw driver for the above commands also. #make sure to set currentdir() to where the SQL database is # CAS_plots:=module() #global to the module only. Shared among all procs local db:=-1; local cas::list:=["mma","rubi","maple","fricas","giac","maxima","sympy","mupad"]; ################# export openDB:=proc(full_name::string) try db:=Database[SQLite]:-Open(full_name): catch: error lastexception; end try; end proc; ################# export closeDB:=proc() if db=-1 then error "database not open"; else Database[SQLite]:-Close(db): db :=-1; fi; end proc; ################# export make_number_of_steps_plot:=proc() local A,number_of_integrals::posint,K,M::posint,N::posint; local max_number_of_steps:=20; local data; local number_of_problems::integer; local stmt,p1,p2; if db=-1 then error "database not open"; fi; data := Matrix(max_number_of_steps,8); A := Database[SQLite]:-Prepare(db, cat("SELECT COUNT(*) FROM main;")); A := Database[SQLite]:-FetchAll(A); number_of_integrals:=A[1,1]; for N from 1 to max_number_of_steps do stmt := Database[SQLite]:-Prepare(db, cat("SELECT COUNT(*) FROM main where rubi_number_of_steps=",String(N),";")); stmt := Database[SQLite]:-FetchAll(stmt); number_of_problems:=stmt[1,1]; for M from 1 to nops(cas) do data[N,M] := get_percent_by_steps(N,number_of_problems,cas[M]); od; od; p1 := dataplot(data, style=line, gridlines=true, size=[600,"golden"], view=[default,0..110], labels=["Number of rubi steps used","% solved"], font=[Times,default,12],labelfont=[14,14]): p2 := plots:-textplot( [ [ 3 , 105 , "rubi"] , [ 12,95, "mma" ], [14,87,"maple"], [12 ,69, "fricas"], [8.8 ,48, "giac"], [16 ,47, "mupad"], [8.6,31, "maxima"], [16,14, "sympy"] ]): return plots:-display( [p1 , p2]); end proc; ################# export make_number_of_rules_plot:=proc() local A,number_of_integrals::posint,K,conn,M::posint,N::posint,p1,p2; local max_number_of_rules:=9; local data; local number_of_problems::integer; local stmt; if db=-1 then error "database not open"; fi; data:=Matrix(max_number_of_rules,8); A := Database[SQLite]:-Prepare(db, cat("SELECT COUNT(*) FROM main;")); A := Database[SQLite]:-FetchAll(A); number_of_integrals:=A[1,1]; for N from 1 to max_number_of_rules do stmt := Database[SQLite]:-Prepare(db, cat("SELECT COUNT(*) FROM main where rubi_number_of_rules=",String(N),";")); stmt := Database[SQLite]:-FetchAll(stmt); number_of_problems:=stmt[1,1]; for M from 1 to nops(cas) do data[N,M]:=get_percent_per_rules(N,number_of_problems,cas[M]); od; od; p1 := dataplot(data, style=line, gridlines=true, size=[600,"golden"], view=[default,0..110], labels=["Number of rubi rules used","% solved"], font=[Times,default,12], labelfont=[14,14]): p2 := plots:-textplot( [[ 3 , 105 , "rubi"] , [ 6,95, "mma" ], [8,88,"maple"], [8,88,"maple"], [8 ,73, "fricas"], [6.5 ,52, "giac"], [4.5 ,54, "mupad"], [5.1,38, "maxima"], [7,17, "sympy"] ]): return plots:-display( [p1 , p2]); end proc: ################ # private procs below ################# local get_percent_per_rules:=proc(number_of_rules::posint, number_of_problems::posint, cas_name::string) local s,p; s := Database[SQLite]:-Prepare(db, cat("SELECT COUNT(*) FROM main where rubi_number_of_rules=", String(number_of_rules)," and ",cas_name,"_pass=1;")); s := Database[SQLite]:-FetchAll(s); p :=s[1,1]; return p*100./number_of_problems; end proc: ################# local get_percent_by_steps:=proc(number_of_steps::posint, number_of_problems::posint, cas_name::string) local s,p; s := Database[SQLite]:-Prepare(db, cat("SELECT COUNT(*) FROM main where rubi_number_of_steps=", String(number_of_steps)," and ",cas_name,"_pass=1;")); s := Database[SQLite]:-FetchAll(s); p := s[1,1]; return p*100./number_of_problems; end proc: end module;
The following are the different integrand types the test suite contains.
The following table gives percentage solved of each CAS per integrand type.
Integrand type | problems | Rubi | Mathematica | Maple | Maxima | Fricas | Sympy | Giac | Mupad |
Independent tests | 1892 | 99. | 99.21 | 93.71 | 82.03 | 95.24 | 73.1 | 86.58 | 82.03 |
Algebraic Binomial | 14276 | 99.99 | 99.8 | 83.03 | 60.65 | 80.86 | 61.73 | 64.67 | 60.65 |
Algebraic Trinomial | 10187 | 99.99 | 99.34 | 90.73 | 52.98 | 84.97 | 40.18 | 72.23 | 56.66 |
Algebraic Miscellaneous | 1519 | 99.41 | 98.49 | 87.62 | 52.27 | 81.96 | 46.08 | 61.55 | 61.88 |
Exponentials | 961 | 99.79 | 96.67 | 81.48 | 66.81 | 90.74 | 45.68 | 49.53 | 71.49 |
Logarithms | 3085 | 99.81 | 97.83 | 58.54 | 56.4 | 58.12 | 34.26 | 47.46 | 43.18 |
Trigonometric | 22551 | 99.91 | 97.66 | 85.85 | 48.62 | 76.52 | 16.23 | 48.33 | 49.39 |
Inverse Trigonometric | 4585 | 99.96 | 97.95 | 83.88 | 37.43 | 49.84 | 37.19 | 42.97 | 38.43 |
Hyperbolic | 5166 | 100. | 98.26 | 82.69 | 62.04 | 90.77 | 23.87 | 64.94 | 54.72 |
Inverse Hyperbolic | 6626 | 99.97 | 98.25 | 79.79 | 47.83 | 63.25 | 28.4 | 36.84 | 39.6 |
Special functions | 999 | 100. | 95.7 | 70.37 | 47.65 | 71.27 | 46.85 | 31.23 | 40.24 |
Sam Blake file | 3154 | 64.87 | 90.87 | 56.75 | 18.07 | 72.26 | 17.66 | 25.43 | 25.68 |
Waldek Hebisch file | 10335 | 63.42 | 96.88 | 97.7 | 93.2 | 99.91 | 94.57 | 86.8 | 90.13 |
MIT Bee integration | 316 | 93.35 | 98.73 | 94.62 | 92.41 | 96.84 | 82.28 | 91.77 | 89.56 |
Table of integrals | 70 | 100. | 100. | 100. | 98.57 | 100. | 100. | 100. | 100. |
In addition to the above table, for each type of integrand listed above, 3D chart is made which shows how each CAS performed on that specific integrand type.
These charts and the table above can be used to show where each CAS relative strength or weakness in the area of integration.
The following table gives the largest ratio found in each test file, between each CAS antiderivative and the optimal antiderivative.
For each test input file, the problem with the largest ratio \(\frac {\text {CAS leaf size}}{\text {Optimal leaf size}}\) is recorded with the corresponding problem number.
In each column in the table below, the first number is the maximum leaf size ratio, and the number that follows inside the parentheses is the problem number in that specific file where this maximum ratio was found. This ratio is determined only when CAS solved the the problem and also when an optimal antiderivative is known.
If it happens that a CAS was not able to solve all the integrals in the input test file, or if it was not possible to obtain leaf size for the CAS result for all the problems in the file, then a zero is used for the ratio and -1 is used for the problem number.
This makes it easier to locate the problem. In the future, a direct link will be added as well.
# |
Rubi |
Mathematica |
Maple |
Maxima |
FriCAS |
Sympy |
Giac |
Mupad |
1 |
1. (1) |
3.9 (50) |
16.9 (114) |
3.8 (169) |
4. (45) |
4789.3 (145) |
4.2 (164) |
42.4 (169) |
2 |
7.3 (21) |
5. (20) |
3.6 (17) |
113.1 (21) |
14.3 (13) |
16.8 (5) |
4.6 (2) |
3.3 (26) |
3 |
1. (1) |
1.1 (14) |
17. (6) |
11.1 (7) |
2. (8) |
1.9 (5) |
1.9 (5) |
11.3 (5) |
4 |
6.4 (5) |
14.3 (13) |
14.7 (46) |
16.6 (43) |
5.5 (43) |
4.8 (40) |
5.3 (1) |
6.9 (4) |
5 |
1. (1) |
54.7 (278) |
12737.8 (278) |
8.1 (280) |
7.7 (280) |
39.8 (123) |
19.5 (141) |
14.1 (204) |
6 |
1. (1) |
1.4 (3) |
2.2 (4) |
1.9 (1) |
1.4 (7) |
0.8 (4) |
2.3 (5) |
1.3 (3) |
7 |
2.2 (3) |
5.6 (7) |
1.8 (3) |
2.8 (3) |
6.7 (9) |
5. (2) |
1.9 (3) |
1.7 (3) |
8 |
1.6 (50) |
5.3 (31) |
5.1 (40) |
6.5 (11) |
5. (42) |
26.4 (71) |
5.2 (70) |
22.5 (70) |
9 |
1.2 (365) |
7.2 (80) |
3.7 (296) |
12.1 (328) |
4.2 (341) |
4789.3 (251) |
15. (328) |
6. (9) |
10 |
3.2 (335) |
45.7 (446) |
3343.5 (327) |
36.9 (399) |
261.1 (248) |
124.9 (217) |
18.8 (537) |
12.8 (253) |
11 |
529. (82) |
127. (82) |
317. (82) |
2.7 (2) |
70. (82) |
41.3 (17) |
6.6 (50) |
207. (82) |
12 |
1.8 (6) |
2.3 (4) |
1.2 (8) |
1.5 (2) |
3.3 (3) |
3.4 (3) |
1.6 (2) |
0.9 (8) |
13 |
7.1 (369) |
23.8 (1323) |
30.9 (1323) |
32.9 (1323) |
32.9 (1323) |
136.1 (671) |
34. (1323) |
38.1 (1323) |
14 |
2. (870) |
16.5 (1101) |
22.6 (1101) |
24.4 (1716) |
21.5 (1101) |
441.1 (578) |
46.7 (827) |
29.4 (580) |
15 |
3.3 (97) |
9.3 (99) |
29.2 (111) |
2.9 (119) |
10.7 (21) |
49.2 (119) |
10. (119) |
23.5 (12) |
16 |
1. (1) |
2.2 (25) |
8.6 (25) |
4. (25) |
9. (25) |
143.6 (25) |
19.9 (25) |
1.7 (3) |
17 |
2.6 (35) |
10.1 (67) |
38. (66) |
1.7 (35) |
9.5 (59) |
12. (4) |
37.2 (53) |
20.5 (5) |
18 |
1. (3) |
27.5 (31) |
100. (35) |
0. (-1) |
2.6 (3) |
0. (-1) |
0. (-1) |
0. (-1) |
19 |
8.2 (664) |
8.7 (663) |
7.9 (196) |
10. (196) |
10. (196) |
55.3 (528) |
8. (434) |
10.1 (196) |
20 |
1.6 (254) |
8.9 (59) |
136.7 (70) |
4.4 (73) |
26.1 (159) |
10.2 (24) |
5.9 (69) |
23.2 (32) |
21 |
1. (655) |
12.6 (337) |
33.5 (754) |
3.1 (313) |
17.2 (1016) |
32.8 (324) |
8.6 (553) |
30.3 (244) |
22 |
1.3 (64) |
2.6 (63) |
22.5 (55) |
1.3 (15) |
11.3 (62) |
3. (21) |
3. (98) |
1.7 (21) |
23 |
1. (1) |
1.3 (37) |
10.4 (15) |
2.1 (15) |
7. (15) |
53. (15) |
13.8 (15) |
2.5 (1) |
24 |
1.2 (173) |
1.9 (45) |
3.3 (163) |
3.6 (161) |
5.2 (26) |
51.1 (57) |
4. (157) |
1.8 (133) |
25 |
8.4 (2686) |
13.4 (2913) |
77.7 (1993) |
13.2 (2285) |
3754.9 (1276) |
230.3 (2266) |
28.4 (2813) |
16.4 (2913) |
26 |
1.4 (342) |
10.3 (306) |
17.9 (265) |
4. (40) |
15.1 (265) |
232.7 (291) |
6. (292) |
20.4 (256) |
27 |
1.3 (816) |
13.6 (1007) |
77.4 (546) |
29.1 (1063) |
57.9 (267) |
36.6 (124) |
9.8 (1052) |
22.9 (873) |
28 |
1.2 (46) |
6. (14) |
51.1 (15) |
2.4 (15) |
28.3 (15) |
302. (9) |
67.8 (15) |
6.1 (15) |
29 |
1.2 (552) |
3.8 (45) |
13.9 (215) |
10. (43) |
4003.6 (171) |
14.9 (577) |
8.1 (591) |
16.9 (171) |
30 |
1.3 (278) |
10. (328) |
51.5 (297) |
11.2 (348) |
16.3 (197) |
10. (328) |
10.6 (331) |
12.5 (348) |
31 |
1. (1) |
1.6 (28) |
4.9 (269) |
3.2 (114) |
4. (269) |
21.6 (269) |
6.3 (269) |
3.4 (190) |
32 |
2.8 (83) |
6.2 (127) |
5.8 (74) |
2.2 (83) |
7.2 (127) |
16.4 (63) |
6.9 (17) |
3.5 (25) |
33 |
2. (2419) |
33.1 (1256) |
96.2 (557) |
27. (557) |
66.3 (2300) |
239.3 (2549) |
43.7 (2354) |
79.2 (1229) |
34 |
1.3 (1471) |
11.5 (1633) |
73.8 (949) |
50.9 (2170) |
60.6 (1627) |
1537.6 (1013) |
78.9 (2229) |
24.6 (2005) |
35 |
2.1 (833) |
46.1 (890) |
116.1 (801) |
5.5 (579) |
62. (796) |
141.7 (925) |
20. (925) |
24.8 (618) |
36 |
1. (1) |
3.4 (107) |
425.1 (78) |
2.7 (95) |
29.8 (112) |
1.2 (19) |
92.3 (6) |
3. (100) |
37 |
1. (129) |
4.1 (35) |
14197.2 (12) |
6.6 (27) |
62.5 (74) |
8.6 (14) |
5.8 (37) |
9.1 (4) |
38 |
1.8 (76) |
17.7 (261) |
421. (278) |
93.8 (278) |
88.2 (278) |
232.5 (367) |
119.2 (278) |
101.3 (278) |
39 |
1.7 (636) |
8.8 (109) |
7. (109) |
5.4 (515) |
33.9 (1086) |
27.8 (1105) |
13.7 (885) |
28.1 (910) |
40 |
1.7 (212) |
9.5 (88) |
27.3 (220) |
6.5 (88) |
61.9 (268) |
31.4 (284) |
59.7 (275) |
18.4 (218) |
41 |
1.9 (327) |
31.4 (371) |
8.5 (55) |
5.6 (70) |
68.2 (308) |
80.3 (55) |
35.3 (309) |
31.1 (105) |
42 |
1. (59) |
3.6 (103) |
49.4 (108) |
1.4 (111) |
3428.4 (21) |
43. (11) |
42.2 (40) |
11.9 (21) |
43 |
1.6 (135) |
1.8 (51) |
13.8 (37) |
1.6 (131) |
4782.7 (22) |
119.4 (37) |
20.4 (60) |
25.8 (51) |
44 |
1.9 (1) |
2.4 (22) |
6.4 (29) |
0. (-1) |
4.2 (35) |
0.8 (1) |
2.5 (42) |
3.8 (34) |
45 |
1. (1) |
4.9 (4) |
0.9 (4) |
0. (-1) |
0. (-1) |
0. (-1) |
0. (-1) |
0. (-1) |
46 |
2.1 (154) |
20. (601) |
54.7 (609) |
7.4 (609) |
46.4 (637) |
103.6 (597) |
141. (596) |
42.1 (312) |
47 |
1. (1) |
25.5 (83) |
1.6 (15) |
1.8 (68) |
51. (41) |
42.2 (68) |
15.3 (37) |
12. (37) |
48 |
1. (67) |
25.1 (143) |
88.8 (96) |
88.7 (96) |
77.1 (93) |
82.9 (93) |
73.6 (96) |
75.2 (93) |
49 |
1. (1) |
11. (17) |
1.7 (11) |
2.1 (16) |
2.2 (16) |
3.2 (11) |
3.3 (16) |
1.8 (11) |
50 |
1. (1) |
1.7 (99) |
4. (72) |
1.1 (72) |
9.5 (102) |
18.1 (72) |
12.1 (79) |
22.8 (88) |
51 |
6.2 (424) |
11.6 (162) |
294.5 (194) |
42.3 (63) |
15310.8 (134) |
90.8 (255) |
27.1 (202) |
75.1 (192) |
52 |
4.1 (1017) |
172.1 (1010) |
3059.3 (1010) |
5.1 (612) |
40.5 (871) |
163.8 (182) |
41.7 (717) |
25.8 (404) |
53 |
1. (1) |
1.2 (82) |
9.5 (87) |
2.2 (2) |
2. (81) |
2.5 (2) |
55.7 (2) |
1.8 (2) |
54 |
1. (1) |
1.6 (4) |
16. (46) |
2.6 (46) |
5. (58) |
2.2 (32) |
37.8 (39) |
1.8 (20) |
55 |
1.2 (655) |
5.3 (636) |
38.7 (267) |
125.2 (267) |
28.5 (292) |
11.9 (563) |
53.7 (563) |
14.9 (268) |
56 |
1. (1) |
1.3 (133) |
83.5 (150) |
4.9 (149) |
5. (150) |
11. (150) |
10.2 (81) |
2.6 (61) |
57 |
1.5 (120) |
3.9 (363) |
97.5 (440) |
5.1 (348) |
17.4 (440) |
179.8 (441) |
10.8 (392) |
2.5 (65) |
58 |
1.5 (176) |
12.4 (64) |
837. (189) |
3. (166) |
10. (237) |
2.6 (5) |
21.6 (186) |
2.2 (166) |
59 |
1.6 (178) |
39.2 (308) |
376.9 (168) |
7. (10) |
5.9 (269) |
5.5 (119) |
116.7 (239) |
6.6 (239) |
60 |
1. (1) |
16.8 (81) |
1428.6 (228) |
79.4 (81) |
7.1 (212) |
8. (71) |
26.2 (1) |
10.7 (81) |
61 |
1.4 (39) |
30.8 (67) |
11.2 (75) |
14.2 (44) |
4.5 (15) |
11.7 (12) |
12.3 (34) |
7. (34) |
62 |
1.2 (367) |
9.6 (340) |
161.9 (62) |
9.1 (340) |
9. (404) |
38.1 (427) |
35.8 (456) |
3.6 (52) |
63 |
1.5 (390) |
4.3 (45) |
1142.9 (92) |
7.4 (390) |
32.2 (197) |
34.4 (183) |
13.8 (45) |
5.7 (197) |
64 |
1.2 (284) |
13.1 (44) |
2190.9 (91) |
10.6 (23) |
11.4 (91) |
15.9 (189) |
15.3 (28) |
7.6 (90) |
65 |
1. (1) |
114.1 (497) |
33.3 (493) |
3.9 (111) |
7.8 (301) |
137.4 (62) |
5.7 (105) |
6.2 (210) |
66 |
1. (1) |
8.6 (249) |
7.6 (83) |
21.4 (209) |
13.1 (209) |
29.5 (193) |
633.3 (22) |
12. (328) |
67 |
1. (1) |
9.2 (12) |
4.3 (51) |
2.4 (21) |
5.9 (53) |
17.1 (49) |
2.4 (5) |
1.8 (21) |
68 |
1. (1) |
1.8 (113) |
7.6 (65) |
21.3 (45) |
2.3 (38) |
2.2 (12) |
69.6 (38) |
1.7 (12) |
69 |
1. (1) |
3.3 (203) |
7.8 (201) |
168.3 (37) |
4.7 (44) |
8.4 (115) |
14. (217) |
2.7 (37) |
70 |
2. (615) |
510.4 (349) |
397.6 (608) |
9. (151) |
23.4 (476) |
68.3 (344) |
14.1 (630) |
17.8 (528) |
71 |
1. (1) |
1.1 (10) |
1.4 (29) |
8.1 (33) |
1.1 (10) |
3.9 (12) |
2.3 (30) |
1.1 (8) |
72 |
1.6 (103) |
56.7 (138) |
3.1 (17) |
4. (53) |
7. (201) |
2.6 (40) |
762. (36) |
14.1 (189) |
73 |
1.9 (621) |
1029.2 (406) |
8115.7 (795) |
33.4 (256) |
16.2 (711) |
79.3 (470) |
20.9 (633) |
29.5 (187) |
74 |
1.6 (1108) |
1478. (937) |
150.5 (174) |
9.3 (46) |
15.3 (937) |
223.9 (697) |
443.5 (175) |
22.1 (1306) |
75 |
1.3 (12) |
2212.1 (38) |
686.6 (48) |
7.7 (16) |
29.9 (35) |
3.4 (1) |
4.1 (22) |
13.8 (39) |
76 |
1.2 (206) |
83.1 (202) |
7213.4 (353) |
38.2 (48) |
16.7 (327) |
66.6 (265) |
268.7 (222) |
25.5 (248) |
77 |
1. (1) |
6.7 (10) |
3.9 (2) |
13.5 (1) |
2.6 (2) |
412.4 (8) |
5.4 (12) |
2.4 (3) |
78 |
1.4 (32) |
156.5 (4) |
4.4 (33) |
3.5 (20) |
2.2 (18) |
2.3 (32) |
1.5 (16) |
2.9 (1) |
79 |
1.8 (236) |
228.2 (240) |
51483.2 (593) |
19. (487) |
3020.2 (254) |
9937.7 (81) |
19.3 (510) |
30.3 (320) |
80 |
1. (1) |
2.2 (2) |
1.8 (2) |
1.3 (2) |
4.6 (1) |
11.7 (4) |
2.3 (2) |
35.6 (4) |
81 |
1. (1) |
1.5 (16) |
1.4 (10) |
1. (19) |
51.7 (13) |
2.8 (11) |
1.8 (14) |
13.3 (14) |
82 |
1. (1) |
3.7 (284) |
8.3 (12) |
16.5 (170) |
4.1 (42) |
2.5 (64) |
1015. (141) |
3.5 (41) |
83 |
1. (1) |
3.5 (187) |
8.3 (76) |
12.7 (133) |
6.9 (33) |
4.1 (9) |
627.4 (22) |
2.4 (1) |
84 |
1. (1) |
2.4 (61) |
3.4 (50) |
788.2 (7) |
6.2 (52) |
6. (41) |
2. (5) |
1.3 (4) |
85 |
1. (1) |
1.3 (94) |
4.2 (26) |
4.2 (86) |
1.5 (35) |
6. (61) |
4.3 (35) |
1.1 (87) |
86 |
4.3 (11) |
4.1 (60) |
6.5 (78) |
3.2 (3) |
4.2 (32) |
35.5 (25) |
3.7 (11) |
16.1 (24) |
87 |
1. (1) |
1. (10) |
1.4 (29) |
8.1 (32) |
1.1 (10) |
3.8 (12) |
2.3 (30) |
1.1 (8) |
88 |
1. (1) |
3.2 (1) |
3. (3) |
4.1 (3) |
4.1 (20) |
0. (-1) |
3. (3) |
14.7 (10) |
89 |
1.4 (370) |
35.3 (773) |
9.3 (642) |
6489.4 (123) |
7.2 (484) |
23. (452) |
48.9 (782) |
26.6 (462) |
90 |
1. (1) |
2.8 (2) |
3. (2) |
0. (-1) |
0. (-1) |
0. (-1) |
0. (-1) |
0. (-1) |
91 |
1. (1) |
3. (1) |
1.3 (1) |
3.7 (1) |
1.8 (1) |
0. (-1) |
1.6 (1) |
1.2 (1) |
92 |
1.1 (40) |
36.7 (454) |
14.3 (436) |
7944.2 (100) |
8.1 (279) |
36.2 (252) |
7.2 (259) |
20.5 (260) |
93 |
1. (1) |
53.3 (393) |
8. (29) |
20.3 (115) |
3.4 (319) |
9. (35) |
1080.9 (91) |
2.8 (122) |
94 |
1.4 (940) |
84.8 (1350) |
18. (1154) |
7808.5 (402) |
7.5 (1007) |
29.3 (565) |
7.5 (994) |
28.4 (566) |
95 |
1.2 (81) |
4.9 (91) |
5.9 (69) |
9.4 (53) |
3020.2 (79) |
1914.1 (31) |
3.7 (91) |
20.3 (14) |
96 |
1. (1) |
2.1 (9) |
2.3 (17) |
1. (2) |
15.4 (14) |
13.9 (4) |
7. (4) |
38.3 (4) |
97 |
1. (1) |
1.9 (5) |
1.4 (20) |
0.8 (11) |
51.4 (8) |
3.2 (12) |
66.7 (8) |
13.4 (5) |
98 |
1. (1) |
106.8 (358) |
402.6 (52) |
1.3 (7) |
9. (251) |
3. (376) |
24.8 (8) |
26.5 (105) |
99 |
1. (1) |
4.5 (44) |
8.6 (29) |
10.5 (49) |
5. (54) |
2.5 (24) |
6.5 (22) |
2.8 (16) |
100 |
1. (1) |
3.8 (44) |
1.2 (15) |
7.9 (52) |
4.5 (39) |
16.9 (21) |
1.7 (21) |
2.3 (28) |
101 |
1.5 (562) |
75.5 (641) |
173.9 (617) |
19. (393) |
8.6 (80) |
40. (172) |
718. (543) |
10.6 (560) |
102 |
1. (1) |
7. (46) |
2.8 (2) |
2.9 (67) |
7.5 (75) |
1.3 (2) |
352.2 (32) |
6.3 (58) |
103 |
1.4 (891) |
200.5 (678) |
7841827.2 (1268) |
147.2 (1121) |
295.8 (1257) |
68.3 (1213) |
27.4 (1203) |
64.1 (1121) |
104 |
1. (1) |
941.7 (463) |
15282.6 (454) |
144. (373) |
246.2 (354) |
42.2 (280) |
24.3 (257) |
31.3 (373) |
105 |
1. (130) |
3975.5 (145) |
43.6 (123) |
3. (83) |
11.4 (83) |
145.8 (74) |
39.8 (64) |
18.8 (113) |
106 |
1. (1) |
44.6 (159) |
2905.5 (351) |
18.1 (272) |
20.7 (379) |
62.9 (245) |
1941.1 (43) |
48. (137) |
107 |
1. (1) |
777.6 (45) |
37408.6 (26) |
0. (-1) |
16.5 (45) |
0. (-1) |
0. (-1) |
0. (-1) |
108 |
1. (1) |
21.6 (47) |
143.1 (43) |
1.3 (4) |
4.9 (20) |
2.6 (1) |
4.2 (3) |
5.9 (7) |
109 |
1. (1) |
4.5 (42) |
10.3 (27) |
17.4 (47) |
5.2 (59) |
2.4 (22) |
40.3 (8) |
2.2 (16) |
110 |
1. (1) |
2.5 (11) |
2.5 (2) |
3.3 (11) |
4. (7) |
1.3 (2) |
2.5 (7) |
6.7 (17) |
111 |
1. (1) |
2.4 (5) |
3.2 (2) |
4.3 (7) |
3.3 (7) |
1.2 (2) |
2.7 (6) |
8.7 (15) |
112 |
1. (1) |
3.9 (15) |
17.5 (103) |
1.9 (94) |
3.5 (90) |
35.7 (93) |
2.4 (94) |
31.3 (90) |
113 |
1. (1) |
23.7 (22) |
35. (29) |
13.6 (8) |
13. (57) |
59.8 (7) |
17.1 (37) |
21.2 (57) |
114 |
1. (1) |
1997.4 (22) |
31763.8 (3) |
0. (-1) |
26. (27) |
0. (-1) |
0. (-1) |
0. (-1) |
115 |
1. (1) |
14.7 (42) |
47. (288) |
25.9 (47) |
5.7 (42) |
3.3 (1) |
11.7 (42) |
3.9 (223) |
116 |
1. (1) |
10. (40) |
4.1 (29) |
15.5 (16) |
5.2 (6) |
0. (-1) |
6.1 (18) |
1.8 (18) |
117 |
1. (1) |
3.2 (18) |
5.9 (73) |
120.4 (20) |
4.5 (68) |
2.2 (53) |
4.2 (20) |
5.5 (15) |
118 |
1.4 (423) |
249. (874) |
14.7 (578) |
1460.2 (263) |
7. (515) |
2.6 (5) |
5.8 (513) |
26.5 (502) |
119 |
1. (1) |
45.2 (153) |
12.6 (284) |
2.9 (65) |
5.8 (227) |
0. (-1) |
7. (196) |
10.9 (218) |
120 |
1.7 (340) |
55.8 (191) |
46.5 (339) |
3.7 (67) |
34.3 (339) |
13.1 (90) |
7.1 (286) |
19.8 (295) |
121 |
1.3 (115) |
2602.3 (169) |
1151.1 (153) |
40.5 (109) |
9.1 (159) |
0. (-1) |
5.1 (159) |
20.3 (190) |
122 |
2.2 (197) |
1877.2 (240) |
7.1 (238) |
46.4 (130) |
15.6 (263) |
3. (170) |
4.3 (256) |
24.3 (254) |
123 |
1.3 (265) |
350.5 (634) |
15.8 (385) |
1629.1 (267) |
8.2 (336) |
2.2 (47) |
6.9 (335) |
20.2 (324) |
124 |
1. (1) |
3.1 (36) |
24.1 (25) |
14.5 (25) |
2.6 (58) |
2.9 (33) |
2.7 (41) |
6. (58) |
125 |
1.2 (870) |
383.4 (1373) |
19.8 (970) |
2062.5 (624) |
7.3 (808) |
3. (930) |
7.6 (489) |
28.4 (679) |
126 |
1. (1) |
66.8 (138) |
544.5 (433) |
49.9 (379) |
27.4 (461) |
11.8 (363) |
15. (389) |
31.6 (116) |
127 |
1. (1) |
5.6 (42) |
12.4 (21) |
33.4 (39) |
3.8 (42) |
3.1 (1) |
3.1 (41) |
3.7 (61) |
128 |
1. (1) |
4. (25) |
5. (74) |
39.4 (15) |
4.6 (69) |
2.2 (53) |
2.9 (61) |
23. (27) |
129 |
1. (1) |
5.3 (36) |
19.6 (18) |
6.4 (13) |
8.5 (20) |
0. (-1) |
13.6 (15) |
24.8 (49) |
130 |
1. (1) |
2.5 (8) |
2.6 (8) |
4.9 (8) |
3.7 (14) |
0. (-1) |
2.2 (8) |
15.8 (9) |
131 |
1.3 (20) |
3.3 (10) |
1.9 (5) |
3.5 (1) |
5. (22) |
0. (-1) |
2.2 (10) |
27.9 (20) |
132 |
1. (1) |
2.7 (3) |
2.2 (8) |
2.5 (8) |
2.3 (9) |
4.9 (18) |
3.3 (12) |
3.9 (4) |
133 |
1. (1) |
1.2 (1) |
1.8 (1) |
0. (-1) |
1.4 (1) |
0. (-1) |
0. (-1) |
0. (-1) |
134 |
1. (12) |
3.1 (18) |
26.8 (15) |
26.6 (13) |
16.6 (11) |
0. (-1) |
5.3 (16) |
21.3 (6) |
135 |
1. (1) |
29.1 (187) |
5299951.7 (81) |
85. (57) |
7.2 (231) |
6948.3 (39) |
558.9 (93) |
8. (233) |
136 |
3.3 (23) |
25.3 (272) |
6.3 (209) |
9.5 (209) |
8.5 (143) |
19.3 (124) |
406.5 (236) |
38. (124) |
137 |
1.1 (281) |
8.4 (382) |
14.9 (80) |
58.8 (171) |
13.9 (273) |
10.3 (396) |
6002.2 (153) |
3.1 (81) |
138 |
1. (1) |
2.7 (1) |
6.9 (9) |
0.4 (5) |
12. (4) |
1.1 (5) |
0.7 (5) |
2.2 (5) |
139 |
4.3 (259) |
7.8 (318) |
12.8 (259) |
90.9 (225) |
3.5 (111) |
5.6 (18) |
2097.9 (70) |
4.1 (224) |
140 |
19.2 (34) |
9.1 (133) |
9.1 (33) |
79.9 (34) |
4.2 (63) |
33.8 (135) |
264.4 (31) |
8.6 (63) |
141 |
10.8 (759) |
718.9 (434) |
651.2 (860) |
418.5 (198) |
27.5 (503) |
4789.3 (480) |
5737. (605) |
42. (529) |
142 |
1.4 (107) |
2.5 (95) |
4.8 (156) |
1.7 (155) |
1.8 (7) |
2.3 (11) |
9.9 (145) |
3. (150) |
143 |
1. (237) |
9.5 (655) |
19.9 (90) |
3.3 (195) |
6.1 (642) |
2.9 (413) |
56.7 (620) |
3. (662) |
144 |
1.9 (147) |
20.7 (84) |
14. (55) |
12. (177) |
8.2 (103) |
8.1 (206) |
15.5 (255) |
3. (12) |
145 |
1. (1) |
4.9 (41) |
2.8 (156) |
1.8 (155) |
3. (7) |
2.3 (11) |
26.4 (147) |
2. (150) |
146 |
1. (1) |
1.9 (10) |
2.8 (13) |
2.4 (11) |
5.1 (33) |
2. (23) |
36.3 (23) |
1.1 (21) |
147 |
1. (1) |
7.2 (114) |
3.3 (18) |
2.4 (24) |
5.7 (29) |
2. (58) |
3.9 (31) |
2.4 (27) |
148 |
1. (1) |
4.6 (83) |
27.4 (148) |
1.5 (165) |
3.4 (112) |
7.5 (105) |
1.9 (134) |
1.8 (21) |
149 |
1. (1) |
4.1 (25) |
44.1 (20) |
1.7 (8) |
18.6 (21) |
44.7 (8) |
1.2 (21) |
4.1 (7) |
150 |
1.3 (152) |
36.6 (1229) |
186. (1266) |
4.8 (218) |
10.2 (1214) |
11.6 (1159) |
2.4 (1279) |
7.7 (1159) |
151 |
1. (1) |
3.3 (36) |
47.6 (37) |
24.5 (61) |
3. (30) |
9.5 (12) |
1. (27) |
5.2 (1) |
152 |
1.9 (344) |
2.7 (248) |
15.1 (180) |
9.5 (180) |
10. (375) |
11.6 (375) |
7.9 (375) |
4.2 (376) |
153 |
1.1 (117) |
8.3 (63) |
27.1 (147) |
5.4 (67) |
9. (76) |
15.1 (132) |
5.8 (125) |
5.5 (1) |
154 |
1.3 (109) |
8.3 (173) |
55.9 (142) |
13.3 (107) |
9. (183) |
5.9 (106) |
27.1 (135) |
5.5 (149) |
155 |
1. (1) |
1.2 (7) |
1. (2) |
1. (2) |
1.1 (5) |
2.7 (4) |
1.1 (2) |
0.9 (5) |
156 |
1.2 (68) |
3.3 (25) |
11.7 (105) |
3.4 (31) |
6.5 (105) |
2.5 (12) |
84.8 (69) |
2. (29) |
157 |
1. (1) |
9.1 (22) |
5.4 (26) |
1.7 (14) |
4. (24) |
2.7 (8) |
2.6 (2) |
1.2 (5) |
158 |
1.4 (51) |
2.8 (111) |
11.7 (112) |
1.9 (22) |
6.5 (112) |
2.6 (12) |
27.3 (91) |
1.9 (29) |
159 |
1. (1) |
9.3 (21) |
7.1 (26) |
1.6 (13) |
4. (23) |
2.7 (8) |
3.5 (26) |
1.3 (5) |
160 |
1. (1) |
21.7 (430) |
7.5 (379) |
3.7 (327) |
33.5 (496) |
24.6 (231) |
8.7 (6) |
16.6 (489) |
161 |
1. (1) |
5.4 (53) |
3.4 (98) |
12.9 (90) |
6.6 (20) |
1.9 (10) |
6.9 (29) |
1.7 (50) |
162 |
1. (1) |
1.5 (24) |
1.9 (28) |
6. (7) |
6.1 (31) |
0. (-1) |
1.1 (7) |
0. (-1) |
163 |
1. (271) |
8.7 (365) |
7.3 (126) |
21.3 (134) |
32.5 (87) |
22. (74) |
25.9 (273) |
22.4 (234) |
164 |
1.3 (16) |
9.9 (394) |
8.5 (60) |
23.2 (454) |
2699.3 (269) |
9185.8 (34) |
23.5 (81) |
30.4 (325) |
165 |
1. (1) |
13.6 (173) |
6. (1) |
3.6 (1) |
16.2 (36) |
4.1 (8) |
8.7 (6) |
2.4 (16) |
166 |
1. (1) |
1.8 (38) |
3.6 (79) |
3.5 (5) |
4.3 (108) |
2.3 (12) |
18. (32) |
1.7 (12) |
167 |
1. (1) |
2.1 (3) |
3.4 (64) |
12.9 (56) |
6.6 (20) |
1.9 (10) |
5.2 (25) |
1.9 (24) |
168 |
1. (1) |
1.5 (12) |
1.9 (28) |
6. (7) |
6.1 (31) |
0. (-1) |
1.1 (7) |
0. (-1) |
169 |
1. (244) |
8.7 (328) |
6.8 (10) |
11.4 (196) |
44.9 (209) |
22. (152) |
25.9 (246) |
21.4 (180) |
170 |
1.3 (60) |
2.5 (11) |
9.3 (35) |
7.4 (13) |
2966.3 (69) |
1913.7 (26) |
5. (38) |
36.5 (11) |
171 |
1. (1) |
3.7 (3) |
5.5 (68) |
3.4 (8) |
39.5 (11) |
1.7 (8) |
3.2 (8) |
1.6 (32) |
172 |
1.2 (109) |
3.5 (212) |
6.4 (205) |
12.6 (188) |
65.9 (200) |
129.1 (63) |
4.2 (102) |
11.1 (85) |
173 |
1.3 (257) |
10.1 (252) |
7.9 (251) |
23.3 (190) |
178.8 (253) |
36.3 (195) |
13. (219) |
27.4 (106) |
174 |
1. (1) |
4.7 (48) |
5.8 (37) |
3.7 (8) |
30.5 (47) |
11.7 (27) |
3.2 (8) |
1.6 (8) |
175 |
1. (1) |
6.3 (113) |
6.4 (210) |
13. (193) |
66.3 (205) |
11.6 (148) |
5.9 (29) |
11.1 (119) |
176 |
1. (1) |
10.3 (47) |
7.9 (45) |
6.3 (10) |
177.8 (46) |
5.5 (4) |
8.7 (10) |
19.2 (7) |
177 |
1. (1) |
2.6 (6) |
2.9 (5) |
2.5 (7) |
16.2 (9) |
0. (-1) |
2.7 (7) |
1.7 (7) |
178 |
1. (1) |
3.7 (83) |
3.6 (79) |
2. (15) |
21.3 (15) |
0. (-1) |
2. (31) |
4.7 (79) |
179 |
3.5 (186) |
3.4 (146) |
12.7 (186) |
8.6 (59) |
168.4 (146) |
2.2 (119) |
5.4 (186) |
7.5 (116) |
180 |
1.4 (54) |
14.4 (168) |
5.6 (171) |
21.9 (158) |
170.3 (218) |
5. (142) |
4.3 (124) |
18.2 (31) |
181 |
1. (1) |
6.3 (26) |
4.6 (5) |
3.1 (7) |
17.5 (26) |
0. (-1) |
2.8 (7) |
2.2 (25) |
182 |
1. (1) |
5.2 (18) |
3.9 (78) |
2.3 (15) |
28.8 (15) |
0. (-1) |
1.9 (5) |
9.7 (81) |
183 |
3.3 (160) |
6.7 (24) |
22.3 (24) |
6.3 (24) |
33.8 (124) |
0. (-1) |
9. (24) |
8.2 (120) |
184 |
1.1 (12) |
3.4 (24) |
5.6 (17) |
6.2 (1) |
96.8 (15) |
0. (-1) |
8.8 (22) |
9.5 (1) |
185 |
1.9 (192) |
515.8 (777) |
142.2 (767) |
26. (100) |
105. (745) |
138.5 (810) |
12.2 (11) |
24.9 (100) |
186 |
1. (1) |
1.9 (141) |
2.7 (38) |
1.4 (15) |
3.3 (7) |
1. (22) |
2.3 (19) |
0.9 (5) |
187 |
1. (1) |
3.5 (230) |
10. (313) |
3.5 (219) |
11.1 (651) |
3.5 (255) |
2.6 (118) |
1.9 (531) |
188 |
1. (1) |
6.7 (368) |
5.7 (151) |
12.2 (115) |
26.7 (11) |
8.2 (147) |
8.4 (115) |
2.7 (354) |
189 |
1. (1) |
3.2 (39) |
2.3 (18) |
1.2 (135) |
2. (7) |
1.1 (135) |
2. (19) |
0.9 (136) |
190 |
1.4 (20) |
5.5 (516) |
17.2 (93) |
2.6 (22) |
19.2 (508) |
1.7 (528) |
2.2 (528) |
1.6 (347) |
191 |
1.3 (73) |
6.9 (167) |
26. (291) |
9.1 (93) |
49. (20) |
7.6 (122) |
6.3 (93) |
25. (279) |
192 |
1. (1) |
1.9 (31) |
73.1 (172) |
5.3 (202) |
9.9 (216) |
30.9 (63) |
7.5 (1) |
3.3 (200) |
193 |
1.6 (21) |
8. (18) |
56.2 (20) |
2.3 (40) |
236.8 (32) |
62.6 (8) |
10.6 (1) |
8.9 (28) |
194 |
1.6 (538) |
5. (156) |
71.1 (235) |
16.1 (244) |
7.1 (516) |
4.5 (307) |
6.7 (15) |
6.9 (244) |
195 |
1. (43) |
11.2 (42) |
61.2 (46) |
4.9 (9) |
14.6 (37) |
119.2 (37) |
15.4 (37) |
16. (22) |
196 |
2. (172) |
3.7 (868) |
51.8 (222) |
18.3 (1152) |
12.2 (1368) |
30.7 (997) |
9.7 (1368) |
11.7 (652) |
197 |
1.7 (81) |
24. (319) |
24.6 (312) |
4.3 (72) |
10.1 (312) |
7. (276) |
7.6 (133) |
30.3 (131) |
198 |
1.2 (78) |
24. (238) |
3055.9 (185) |
3.9 (95) |
14.6 (108) |
119.2 (108) |
15.3 (108) |
9.4 (176) |
199 |
1.9 (172) |
4.9 (430) |
11.6 (22) |
3.5 (37) |
4.3 (130) |
15.8 (371) |
5.1 (235) |
2.8 (584) |
200 |
1. (1) |
16.3 (85) |
19.4 (124) |
1.4 (47) |
21.8 (124) |
1.5 (35) |
0. (-1) |
1.2 (27) |
201 |
2.8 (38) |
3.6 (29) |
40.3 (80) |
1. (34) |
9.3 (6) |
1.8 (80) |
3.3 (47) |
9.3 (74) |
202 |
1.2 (75) |
2.9 (111) |
11.3 (112) |
2.1 (10) |
23.6 (112) |
1.2 (9) |
0. (-1) |
1.2 (9) |
203 |
1.6 (55) |
8.2 (13) |
5.2 (66) |
2.7 (31) |
7.3 (71) |
2. (31) |
3.1 (54) |
1.5 (31) |
204 |
1. (1) |
1.7 (102) |
2.5 (221) |
1.1 (31) |
2. (140) |
2.7 (221) |
1.6 (18) |
4.4 (48) |
205 |
1. (1) |
2.5 (57) |
1.5 (92) |
3.3 (136) |
2.4 (60) |
2. (179) |
0. (-1) |
0. (-1) |
206 |
1. (1) |
2.6 (41) |
3.4 (134) |
4.4 (88) |
5.7 (117) |
7.3 (69) |
557.1 (66) |
0. (-1) |
207 |
1. (1) |
2.5 (131) |
1.3 (7) |
0. (-1) |
0. (-1) |
8.5 (69) |
0. (-1) |
0. (-1) |
208 |
1. (1) |
1.3 (195) |
2.4 (41) |
4. (155) |
2.7 (28) |
4.9 (30) |
0. (-1) |
1.6 (155) |
209 |
380.1 (628) |
2947.4 (1688) |
183057. (2420) |
6.9 (1028) |
14782.7 (2646) |
99.5 (821) |
31. (1760) |
166.7 (67) |
210 |
643. (6841) |
21182. (7738) |
892063.8 (10190) |
1205. (6099) |
145.9 (2571) |
363.2 (8409) |
39084.8 (5246) |
131.6 (3170) |
211 |
66.8 (46) |
527.7 (105) |
439.4 (224) |
439.4 (224) |
35.8 (64) |
522.8 (105) |
573.4 (253) |
208.3 (46) |
212 |
1.2 (44) |
9.5 (16) |
2.5 (9) |
6.5 (16) |
10. (23) |
7. (23) |
12.5 (18) |
0. (-1) |
|
||||||||
|
||||||||
|
The following table gives the number of passed integrals and number of failed integrals per test number. There are 210 tests. Each tests corresponds to one input file.
# | Rubi
| MMA
| Maple
| Maxima
| FriCAS
| Sympy
| Giac
| Mupad
| ||||||||
Pass | Fail | Pass | Fail | Pass | Fail | Pass | Fail | Pass | Fail | Pass | Fail | Pass | Fail | Pass | Fail | |
1 | 175 | 0 | 175 | 0 | 173 | 2 | 166 | 9 | 174 | 1 | 160 | 15 | 170 | 5 | 169 | 6 |
2 | 33 | 2 | 35 | 0 | 28 | 7 | 16 | 19 | 25 | 10 | 7 | 28 | 17 | 18 | 9 | 26 |
3 | 13 | 1 | 14 | 0 | 12 | 2 | 8 | 6 | 12 | 2 | 9 | 5 | 10 | 4 | 11 | 3 |
4 | 48 | 2 | 50 | 0 | 33 | 17 | 24 | 26 | 48 | 2 | 19 | 31 | 41 | 9 | 12 | 38 |
5 | 279 | 5 | 284 | 0 | 282 | 2 | 252 | 32 | 281 | 3 | 253 | 31 | 269 | 15 | 270 | 14 |
6 | 3 | 4 | 7 | 0 | 5 | 2 | 3 | 4 | 7 | 0 | 5 | 2 | 5 | 2 | 7 | 0 |
7 | 7 | 2 | 9 | 0 | 9 | 0 | 7 | 2 | 9 | 0 | 5 | 4 | 9 | 0 | 9 | 0 |
8 | 113 | 0 | 113 | 0 | 113 | 0 | 111 | 2 | 112 | 1 | 105 | 8 | 109 | 4 | 106 | 7 |
9 | 376 | 0 | 376 | 0 | 376 | 0 | 374 | 2 | 376 | 0 | 346 | 30 | 375 | 1 | 372 | 4 |
10 | 705 | 0 | 705 | 0 | 655 | 50 | 564 | 141 | 660 | 45 | 437 | 268 | 590 | 115 | 542 | 163 |
11 | 113 | 3 | 101 | 15 | 79 | 37 | 20 | 96 | 90 | 26 | 29 | 87 | 35 | 81 | 37 | 79 |
12 | 8 | 0 | 8 | 0 | 8 | 0 | 7 | 1 | 8 | 0 | 8 | 0 | 8 | 0 | 8 | 0 |
13 | 1917 | 0 | 1917 | 0 | 1565 | 352 | 1328 | 589 | 1601 | 316 | 1214 | 703 | 1301 | 616 | 1241 | 676 |
14 | 3201 | 0 | 3201 | 0 | 2870 | 331 | 2051 | 1150 | 2897 | 304 | 1608 | 1593 | 2414 | 787 | 1884 | 1317 |
15 | 158 | 1 | 155 | 4 | 128 | 31 | 39 | 120 | 66 | 93 | 33 | 126 | 42 | 117 | 49 | 110 |
16 | 34 | 0 | 33 | 1 | 28 | 6 | 16 | 18 | 28 | 6 | 19 | 15 | 28 | 6 | 4 | 30 |
17 | 78 | 0 | 78 | 0 | 78 | 0 | 27 | 51 | 64 | 14 | 5 | 73 | 46 | 32 | 40 | 38 |
18 | 35 | 0 | 35 | 0 | 35 | 0 | 0 | 35 | 9 | 26 | 0 | 35 | 0 | 35 | 0 | 35 |
19 | 1071 | 0 | 1071 | 0 | 767 | 304 | 632 | 439 | 735 | 336 | 1023 | 48 | 616 | 455 | 695 | 376 |
20 | 349 | 0 | 349 | 0 | 264 | 85 | 79 | 270 | 192 | 157 | 101 | 248 | 106 | 243 | 66 | 283 |
21 | 1156 | 0 | 1156 | 0 | 1041 | 115 | 704 | 452 | 952 | 204 | 631 | 525 | 822 | 334 | 730 | 426 |
22 | 115 | 0 | 114 | 1 | 107 | 8 | 27 | 88 | 35 | 80 | 26 | 89 | 31 | 84 | 27 | 88 |
23 | 51 | 0 | 51 | 0 | 14 | 37 | 14 | 37 | 14 | 37 | 29 | 22 | 14 | 37 | 14 | 37 |
24 | 174 | 0 | 174 | 0 | 170 | 4 | 170 | 4 | 170 | 4 | 155 | 19 | 170 | 4 | 129 | 45 |
25 | 3078 | 0 | 3059 | 19 | 2591 | 487 | 2196 | 882 | 2625 | 453 | 2743 | 335 | 2043 | 1035 | 2228 | 850 |
26 | 385 | 0 | 383 | 2 | 198 | 187 | 167 | 218 | 214 | 171 | 138 | 247 | 125 | 260 | 170 | 215 |
27 | 1081 | 0 | 1081 | 0 | 749 | 332 | 409 | 672 | 802 | 279 | 395 | 686 | 554 | 527 | 531 | 550 |
28 | 46 | 0 | 46 | 0 | 12 | 34 | 12 | 34 | 12 | 34 | 20 | 26 | 12 | 34 | 12 | 34 |
29 | 594 | 0 | 594 | 0 | 577 | 17 | 422 | 172 | 531 | 63 | 431 | 163 | 420 | 174 | 449 | 145 |
30 | 454 | 0 | 454 | 0 | 385 | 69 | 153 | 301 | 319 | 135 | 115 | 339 | 261 | 193 | 193 | 261 |
31 | 298 | 0 | 296 | 2 | 275 | 23 | 212 | 86 | 277 | 21 | 126 | 172 | 227 | 71 | 197 | 101 |
32 | 143 | 0 | 143 | 0 | 113 | 30 | 108 | 35 | 113 | 30 | 47 | 96 | 111 | 32 | 132 | 11 |
33 | 2590 | 0 | 2582 | 8 | 2325 | 265 | 1428 | 1162 | 2311 | 279 | 1035 | 1555 | 1969 | 621 | 1589 | 1001 |
34 | 2646 | 0 | 2646 | 0 | 2584 | 62 | 1720 | 926 | 2549 | 97 | 1247 | 1399 | 2279 | 367 | 1685 | 961 |
35 | 958 | 0 | 937 | 21 | 729 | 229 | 331 | 627 | 654 | 304 | 261 | 697 | 402 | 556 | 276 | 682 |
36 | 123 | 0 | 123 | 0 | 121 | 2 | 67 | 56 | 111 | 12 | 43 | 80 | 91 | 32 | 53 | 70 |
37 | 143 | 0 | 143 | 0 | 141 | 2 | 15 | 128 | 83 | 60 | 10 | 133 | 50 | 93 | 19 | 124 |
38 | 400 | 0 | 393 | 7 | 388 | 12 | 291 | 109 | 352 | 48 | 142 | 258 | 347 | 53 | 195 | 205 |
39 | 1126 | 0 | 1126 | 0 | 1062 | 64 | 688 | 438 | 1001 | 125 | 472 | 654 | 821 | 305 | 695 | 431 |
40 | 412 | 1 | 407 | 6 | 399 | 14 | 113 | 300 | 245 | 168 | 186 | 227 | 187 | 226 | 184 | 229 |
41 | 413 | 0 | 406 | 7 | 376 | 37 | 173 | 240 | 285 | 128 | 124 | 289 | 267 | 146 | 218 | 195 |
42 | 111 | 0 | 111 | 0 | 111 | 0 | 83 | 28 | 91 | 20 | 45 | 66 | 106 | 5 | 106 | 5 |
43 | 145 | 0 | 145 | 0 | 143 | 2 | 73 | 72 | 124 | 21 | 80 | 65 | 139 | 6 | 143 | 2 |
44 | 42 | 0 | 40 | 2 | 40 | 2 | 0 | 42 | 9 | 33 | 6 | 36 | 5 | 37 | 1 | 41 |
45 | 4 | 0 | 4 | 0 | 4 | 0 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 |
46 | 664 | 0 | 662 | 2 | 496 | 168 | 303 | 361 | 535 | 129 | 274 | 390 | 435 | 229 | 360 | 304 |
47 | 96 | 0 | 92 | 4 | 49 | 47 | 17 | 79 | 48 | 48 | 43 | 53 | 37 | 59 | 49 | 47 |
48 | 156 | 0 | 147 | 9 | 137 | 19 | 69 | 87 | 121 | 35 | 77 | 79 | 110 | 46 | 122 | 34 |
49 | 17 | 0 | 17 | 0 | 2 | 15 | 2 | 15 | 7 | 10 | 1 | 16 | 4 | 13 | 5 | 12 |
50 | 140 | 0 | 139 | 1 | 136 | 4 | 24 | 116 | 130 | 10 | 47 | 93 | 109 | 31 | 72 | 68 |
51 | 491 | 3 | 494 | 0 | 489 | 5 | 409 | 85 | 456 | 38 | 433 | 61 | 423 | 71 | 485 | 9 |
52 | 1019 | 6 | 1002 | 23 | 842 | 183 | 385 | 640 | 789 | 236 | 267 | 758 | 512 | 513 | 455 | 570 |
53 | 98 | 0 | 98 | 0 | 78 | 20 | 64 | 34 | 93 | 5 | 42 | 56 | 56 | 42 | 58 | 40 |
54 | 93 | 0 | 84 | 9 | 75 | 18 | 78 | 15 | 93 | 0 | 53 | 40 | 54 | 39 | 53 | 40 |
55 | 768 | 2 | 747 | 23 | 630 | 140 | 500 | 270 | 686 | 84 | 344 | 426 | 366 | 404 | 576 | 194 |
56 | 193 | 0 | 193 | 0 | 121 | 72 | 106 | 87 | 123 | 70 | 79 | 114 | 102 | 91 | 60 | 133 |
57 | 456 | 0 | 449 | 7 | 332 | 124 | 245 | 211 | 280 | 176 | 260 | 196 | 200 | 256 | 146 | 310 |
58 | 249 | 0 | 243 | 6 | 120 | 129 | 68 | 181 | 90 | 159 | 46 | 203 | 60 | 189 | 46 | 203 |
59 | 314 | 0 | 298 | 16 | 193 | 121 | 238 | 76 | 210 | 104 | 111 | 203 | 186 | 128 | 200 | 114 |
60 | 263 | 0 | 249 | 14 | 98 | 165 | 180 | 83 | 156 | 107 | 44 | 219 | 125 | 138 | 127 | 136 |
61 | 106 | 2 | 108 | 0 | 27 | 81 | 68 | 40 | 41 | 67 | 20 | 88 | 35 | 73 | 35 | 73 |
62 | 543 | 4 | 543 | 4 | 322 | 225 | 224 | 323 | 221 | 326 | 168 | 379 | 215 | 332 | 209 | 338 |
63 | 641 | 0 | 621 | 20 | 352 | 289 | 391 | 250 | 393 | 248 | 201 | 440 | 351 | 290 | 326 | 315 |
64 | 314 | 0 | 314 | 0 | 241 | 73 | 220 | 94 | 279 | 35 | 128 | 186 | 190 | 124 | 183 | 131 |
65 | 538 | 0 | 538 | 0 | 443 | 95 | 243 | 295 | 420 | 118 | 102 | 436 | 213 | 325 | 248 | 290 |
66 | 348 | 0 | 348 | 0 | 264 | 84 | 203 | 145 | 322 | 26 | 116 | 232 | 179 | 169 | 143 | 205 |
67 | 72 | 0 | 72 | 0 | 47 | 25 | 32 | 40 | 47 | 25 | 32 | 40 | 39 | 33 | 36 | 36 |
68 | 113 | 0 | 113 | 0 | 113 | 0 | 53 | 60 | 113 | 0 | 26 | 87 | 71 | 42 | 20 | 93 |
69 | 357 | 0 | 346 | 11 | 245 | 112 | 270 | 87 | 305 | 52 | 113 | 244 | 188 | 169 | 129 | 228 |
70 | 653 | 0 | 638 | 15 | 555 | 98 | 288 | 365 | 521 | 132 | 105 | 548 | 311 | 342 | 258 | 395 |
71 | 36 | 0 | 36 | 0 | 34 | 2 | 34 | 2 | 36 | 0 | 20 | 16 | 34 | 2 | 16 | 20 |
72 | 206 | 2 | 203 | 5 | 178 | 30 | 142 | 66 | 178 | 30 | 5 | 203 | 154 | 54 | 154 | 54 |
73 | 837 | 0 | 820 | 17 | 640 | 197 | 218 | 619 | 580 | 257 | 163 | 674 | 482 | 355 | 344 | 493 |
74 | 1560 | 3 | 1515 | 48 | 1380 | 183 | 983 | 580 | 1294 | 269 | 243 | 1320 | 1215 | 348 | 1131 | 432 |
75 | 51 | 0 | 51 | 0 | 50 | 1 | 16 | 35 | 31 | 20 | 4 | 47 | 21 | 30 | 13 | 38 |
76 | 358 | 0 | 348 | 10 | 290 | 68 | 133 | 225 | 275 | 83 | 102 | 256 | 286 | 72 | 178 | 180 |
77 | 19 | 0 | 15 | 4 | 12 | 7 | 13 | 6 | 13 | 6 | 8 | 11 | 12 | 7 | 13 | 6 |
78 | 34 | 0 | 34 | 0 | 5 | 29 | 7 | 27 | 9 | 25 | 1 | 33 | 3 | 31 | 9 | 25 |
79 | 592 | 2 | 583 | 11 | 522 | 72 | 332 | 262 | 474 | 120 | 74 | 520 | 359 | 235 | 334 | 260 |
80 | 9 | 0 | 9 | 0 | 9 | 0 | 2 | 7 | 9 | 0 | 5 | 4 | 9 | 0 | 9 | 0 |
81 | 19 | 0 | 19 | 0 | 19 | 0 | 5 | 14 | 17 | 2 | 6 | 13 | 9 | 10 | 19 | 0 |
82 | 294 | 0 | 294 | 0 | 196 | 98 | 92 | 202 | 197 | 97 | 18 | 276 | 34 | 260 | 80 | 214 |
83 | 189 | 0 | 189 | 0 | 135 | 54 | 140 | 49 | 137 | 52 | 55 | 134 | 112 | 77 | 74 | 115 |
84 | 62 | 0 | 62 | 0 | 45 | 17 | 39 | 23 | 45 | 17 | 32 | 30 | 39 | 23 | 35 | 27 |
85 | 99 | 0 | 99 | 0 | 87 | 12 | 81 | 18 | 91 | 8 | 33 | 66 | 52 | 47 | 30 | 69 |
86 | 88 | 0 | 88 | 0 | 88 | 0 | 27 | 61 | 57 | 31 | 23 | 65 | 32 | 56 | 34 | 54 |
87 | 34 | 0 | 34 | 0 | 32 | 2 | 32 | 2 | 34 | 0 | 18 | 16 | 32 | 2 | 15 | 19 |
88 | 22 | 0 | 22 | 0 | 22 | 0 | 17 | 5 | 21 | 1 | 1 | 21 | 21 | 1 | 18 | 4 |
89 | 932 | 0 | 924 | 8 | 854 | 78 | 303 | 629 | 675 | 257 | 100 | 832 | 273 | 659 | 310 | 622 |
90 | 4 | 0 | 4 | 0 | 4 | 0 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 |
91 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
92 | 644 | 0 | 635 | 9 | 634 | 10 | 204 | 440 | 470 | 174 | 65 | 579 | 208 | 436 | 231 | 413 |
93 | 393 | 0 | 389 | 4 | 236 | 157 | 119 | 274 | 238 | 155 | 15 | 378 | 18 | 375 | 75 | 318 |
94 | 1541 | 0 | 1535 | 6 | 1533 | 8 | 489 | 1052 | 1160 | 381 | 123 | 1418 | 536 | 1005 | 629 | 912 |
95 | 98 | 0 | 98 | 0 | 98 | 0 | 70 | 28 | 81 | 17 | 19 | 79 | 76 | 22 | 67 | 31 |
96 | 21 | 0 | 21 | 0 | 21 | 0 | 2 | 19 | 18 | 3 | 6 | 15 | 19 | 2 | 19 | 2 |
97 | 20 | 0 | 20 | 0 | 20 | 0 | 4 | 16 | 18 | 2 | 5 | 15 | 20 | 0 | 20 | 0 |
98 | 387 | 0 | 386 | 1 | 267 | 120 | 137 | 250 | 206 | 181 | 18 | 369 | 84 | 303 | 122 | 265 |
99 | 62 | 1 | 63 | 0 | 58 | 5 | 49 | 14 | 63 | 0 | 28 | 35 | 35 | 28 | 32 | 31 |
100 | 66 | 0 | 66 | 0 | 36 | 30 | 61 | 5 | 48 | 18 | 36 | 30 | 36 | 30 | 38 | 28 |
101 | 700 | 0 | 700 | 0 | 580 | 120 | 405 | 295 | 573 | 127 | 124 | 576 | 262 | 438 | 369 | 331 |
102 | 91 | 0 | 90 | 1 | 83 | 8 | 79 | 12 | 83 | 8 | 8 | 83 | 82 | 9 | 83 | 8 |
103 | 1328 | 0 | 1207 | 121 | 1116 | 212 | 577 | 751 | 950 | 378 | 295 | 1033 | 517 | 811 | 835 | 493 |
104 | 855 | 0 | 797 | 58 | 780 | 75 | 428 | 427 | 621 | 234 | 209 | 646 | 270 | 585 | 529 | 326 |
105 | 171 | 0 | 169 | 2 | 122 | 49 | 84 | 87 | 84 | 87 | 63 | 108 | 84 | 87 | 103 | 68 |
106 | 499 | 0 | 497 | 2 | 412 | 87 | 269 | 230 | 407 | 92 | 95 | 404 | 310 | 189 | 283 | 216 |
107 | 51 | 0 | 51 | 0 | 41 | 10 | 0 | 51 | 16 | 35 | 0 | 51 | 0 | 51 | 0 | 51 |
108 | 52 | 0 | 52 | 0 | 37 | 15 | 37 | 15 | 21 | 31 | 8 | 44 | 17 | 35 | 26 | 26 |
109 | 61 | 0 | 61 | 0 | 58 | 3 | 49 | 12 | 61 | 0 | 28 | 33 | 35 | 26 | 28 | 33 |
110 | 23 | 0 | 23 | 0 | 23 | 0 | 19 | 4 | 23 | 0 | 6 | 17 | 23 | 0 | 23 | 0 |
111 | 19 | 0 | 19 | 0 | 19 | 0 | 15 | 4 | 19 | 0 | 4 | 15 | 19 | 0 | 19 | 0 |
112 | 106 | 0 | 105 | 1 | 103 | 3 | 79 | 27 | 31 | 75 | 2 | 104 | 3 | 103 | 103 | 3 |
113 | 64 | 0 | 64 | 0 | 63 | 1 | 21 | 43 | 64 | 0 | 11 | 53 | 53 | 11 | 39 | 25 |
114 | 32 | 0 | 32 | 0 | 26 | 6 | 0 | 32 | 16 | 16 | 0 | 32 | 0 | 32 | 0 | 32 |
115 | 299 | 0 | 299 | 0 | 226 | 73 | 93 | 206 | 199 | 100 | 25 | 274 | 36 | 263 | 78 | 221 |
116 | 46 | 0 | 46 | 0 | 42 | 4 | 36 | 10 | 46 | 0 | 20 | 26 | 24 | 22 | 24 | 22 |
117 | 83 | 0 | 79 | 4 | 51 | 32 | 48 | 35 | 63 | 20 | 37 | 46 | 43 | 40 | 47 | 36 |
118 | 879 | 0 | 869 | 10 | 735 | 144 | 321 | 558 | 609 | 270 | 49 | 830 | 269 | 610 | 323 | 556 |
119 | 305 | 1 | 304 | 2 | 267 | 39 | 175 | 131 | 237 | 69 | 8 | 298 | 191 | 115 | 193 | 113 |
120 | 364 | 1 | 345 | 20 | 331 | 34 | 213 | 152 | 260 | 105 | 40 | 325 | 254 | 111 | 181 | 184 |
121 | 240 | 1 | 227 | 14 | 218 | 23 | 96 | 145 | 145 | 96 | 6 | 235 | 130 | 111 | 56 | 185 |
122 | 286 | 0 | 273 | 13 | 265 | 21 | 166 | 120 | 237 | 49 | 1 | 285 | 224 | 62 | 191 | 95 |
123 | 634 | 0 | 634 | 0 | 586 | 48 | 212 | 422 | 458 | 176 | 8 | 626 | 209 | 425 | 195 | 439 |
124 | 70 | 0 | 70 | 0 | 70 | 0 | 48 | 22 | 70 | 0 | 3 | 67 | 46 | 24 | 49 | 21 |
125 | 1373 | 0 | 1338 | 35 | 1263 | 110 | 510 | 863 | 1034 | 339 | 11 | 1362 | 545 | 828 | 552 | 821 |
126 | 468 | 2 | 424 | 46 | 431 | 39 | 286 | 184 | 402 | 68 | 25 | 445 | 275 | 195 | 243 | 227 |
127 | 70 | 0 | 70 | 0 | 53 | 17 | 28 | 42 | 53 | 17 | 9 | 61 | 31 | 39 | 16 | 54 |
128 | 84 | 0 | 80 | 4 | 52 | 32 | 51 | 33 | 64 | 20 | 37 | 47 | 44 | 40 | 47 | 37 |
129 | 59 | 0 | 53 | 6 | 41 | 18 | 25 | 34 | 41 | 18 | 3 | 56 | 41 | 18 | 33 | 26 |
130 | 16 | 0 | 16 | 0 | 16 | 0 | 12 | 4 | 16 | 0 | 0 | 16 | 16 | 0 | 16 | 0 |
131 | 23 | 0 | 23 | 0 | 23 | 0 | 18 | 5 | 23 | 0 | 0 | 23 | 23 | 0 | 23 | 0 |
132 | 24 | 0 | 24 | 0 | 24 | 0 | 24 | 0 | 24 | 0 | 9 | 15 | 24 | 0 | 24 | 0 |
133 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
134 | 27 | 0 | 27 | 0 | 27 | 0 | 17 | 10 | 27 | 0 | 0 | 27 | 20 | 7 | 8 | 19 |
135 | 254 | 0 | 252 | 2 | 215 | 39 | 159 | 95 | 214 | 40 | 70 | 184 | 161 | 93 | 169 | 85 |
136 | 294 | 0 | 294 | 0 | 289 | 5 | 271 | 23 | 290 | 4 | 67 | 227 | 281 | 13 | 290 | 4 |
137 | 397 | 0 | 396 | 1 | 359 | 38 | 341 | 56 | 365 | 32 | 126 | 271 | 246 | 151 | 155 | 242 |
138 | 9 | 0 | 9 | 0 | 9 | 0 | 1 | 8 | 9 | 0 | 1 | 8 | 1 | 8 | 1 | 8 |
139 | 330 | 0 | 305 | 25 | 107 | 223 | 141 | 189 | 171 | 159 | 69 | 261 | 90 | 240 | 149 | 181 |
140 | 140 | 2 | 142 | 0 | 114 | 28 | 114 | 28 | 115 | 27 | 41 | 101 | 63 | 79 | 50 | 92 |
141 | 944 | 6 | 938 | 12 | 908 | 42 | 655 | 295 | 910 | 40 | 423 | 527 | 725 | 225 | 700 | 250 |
142 | 227 | 0 | 226 | 1 | 217 | 10 | 75 | 152 | 85 | 142 | 100 | 127 | 163 | 64 | 75 | 152 |
143 | 703 | 0 | 694 | 9 | 554 | 149 | 265 | 438 | 265 | 438 | 208 | 495 | 239 | 464 | 146 | 557 |
144 | 472 | 2 | 464 | 10 | 377 | 97 | 123 | 351 | 204 | 270 | 164 | 310 | 246 | 228 | 89 | 385 |
145 | 227 | 0 | 226 | 1 | 215 | 12 | 75 | 152 | 85 | 142 | 100 | 127 | 163 | 64 | 73 | 154 |
146 | 33 | 0 | 33 | 0 | 30 | 3 | 12 | 21 | 15 | 18 | 11 | 22 | 15 | 18 | 3 | 30 |
147 | 118 | 0 | 114 | 4 | 78 | 40 | 30 | 88 | 51 | 67 | 34 | 84 | 51 | 67 | 22 | 96 |
148 | 166 | 0 | 163 | 3 | 145 | 21 | 93 | 73 | 92 | 74 | 96 | 70 | 85 | 81 | 108 | 58 |
149 | 31 | 0 | 26 | 5 | 30 | 1 | 14 | 17 | 11 | 20 | 11 | 20 | 6 | 25 | 14 | 17 |
150 | 1301 | 0 | 1279 | 22 | 1202 | 99 | 423 | 878 | 565 | 736 | 575 | 726 | 464 | 837 | 754 | 547 |
151 | 70 | 0 | 66 | 4 | 69 | 1 | 37 | 33 | 28 | 42 | 24 | 46 | 9 | 61 | 30 | 40 |
152 | 385 | 0 | 368 | 17 | 203 | 182 | 134 | 251 | 286 | 99 | 86 | 299 | 117 | 268 | 147 | 238 |
153 | 153 | 0 | 153 | 0 | 134 | 19 | 87 | 66 | 143 | 10 | 52 | 101 | 59 | 94 | 55 | 98 |
154 | 234 | 0 | 228 | 6 | 228 | 6 | 143 | 91 | 168 | 66 | 82 | 152 | 111 | 123 | 108 | 126 |
155 | 12 | 0 | 12 | 0 | 6 | 6 | 1 | 11 | 6 | 6 | 3 | 9 | 1 | 11 | 6 | 6 |
156 | 174 | 0 | 169 | 5 | 139 | 35 | 85 | 89 | 112 | 62 | 69 | 105 | 96 | 78 | 53 | 121 |
157 | 50 | 0 | 49 | 1 | 37 | 13 | 18 | 32 | 28 | 22 | 13 | 37 | 27 | 23 | 10 | 40 |
158 | 178 | 0 | 172 | 6 | 146 | 32 | 86 | 92 | 114 | 64 | 65 | 113 | 93 | 85 | 57 | 121 |
159 | 49 | 0 | 49 | 0 | 36 | 13 | 15 | 34 | 27 | 22 | 12 | 37 | 25 | 24 | 12 | 37 |
160 | 502 | 0 | 475 | 27 | 341 | 161 | 289 | 213 | 465 | 37 | 123 | 379 | 198 | 304 | 209 | 293 |
161 | 102 | 0 | 101 | 1 | 80 | 22 | 84 | 18 | 78 | 24 | 31 | 71 | 54 | 48 | 29 | 73 |
162 | 33 | 0 | 33 | 0 | 31 | 2 | 31 | 2 | 33 | 0 | 9 | 24 | 31 | 2 | 9 | 24 |
163 | 369 | 0 | 369 | 0 | 319 | 50 | 266 | 103 | 353 | 16 | 120 | 249 | 278 | 91 | 221 | 148 |
164 | 525 | 0 | 501 | 24 | 488 | 37 | 196 | 329 | 444 | 81 | 77 | 448 | 290 | 235 | 247 | 278 |
165 | 183 | 0 | 181 | 2 | 111 | 72 | 143 | 40 | 150 | 33 | 62 | 121 | 103 | 80 | 70 | 113 |
166 | 111 | 0 | 111 | 0 | 111 | 0 | 64 | 47 | 111 | 0 | 26 | 85 | 71 | 40 | 20 | 91 |
167 | 68 | 0 | 68 | 0 | 58 | 10 | 62 | 6 | 60 | 8 | 23 | 45 | 43 | 25 | 21 | 47 |
168 | 33 | 0 | 33 | 0 | 31 | 2 | 31 | 2 | 33 | 0 | 9 | 24 | 31 | 2 | 9 | 24 |
169 | 336 | 0 | 336 | 0 | 297 | 39 | 208 | 128 | 325 | 11 | 103 | 233 | 258 | 78 | 190 | 146 |
170 | 85 | 0 | 84 | 1 | 85 | 0 | 34 | 51 | 72 | 13 | 18 | 67 | 47 | 38 | 55 | 30 |
171 | 77 | 0 | 71 | 6 | 69 | 8 | 63 | 14 | 64 | 13 | 30 | 47 | 46 | 31 | 39 | 38 |
172 | 247 | 0 | 247 | 0 | 207 | 40 | 151 | 96 | 209 | 38 | 68 | 179 | 187 | 60 | 175 | 72 |
173 | 263 | 0 | 263 | 0 | 249 | 14 | 177 | 86 | 260 | 3 | 42 | 221 | 230 | 33 | 185 | 78 |
174 | 61 | 0 | 60 | 1 | 58 | 3 | 55 | 6 | 61 | 0 | 28 | 33 | 35 | 26 | 28 | 33 |
175 | 224 | 0 | 224 | 0 | 164 | 60 | 105 | 119 | 179 | 45 | 33 | 191 | 137 | 87 | 131 | 93 |
176 | 53 | 0 | 53 | 0 | 43 | 10 | 16 | 37 | 50 | 3 | 7 | 46 | 27 | 26 | 32 | 21 |
177 | 16 | 0 | 16 | 0 | 8 | 8 | 5 | 11 | 12 | 4 | 3 | 13 | 4 | 12 | 4 | 12 |
178 | 84 | 0 | 80 | 4 | 49 | 35 | 39 | 45 | 64 | 20 | 34 | 50 | 44 | 40 | 47 | 37 |
179 | 201 | 0 | 192 | 9 | 140 | 61 | 90 | 111 | 179 | 22 | 11 | 190 | 115 | 86 | 94 | 107 |
180 | 220 | 0 | 220 | 0 | 180 | 40 | 147 | 73 | 217 | 3 | 10 | 210 | 134 | 86 | 121 | 99 |
181 | 29 | 0 | 29 | 0 | 19 | 10 | 13 | 16 | 25 | 4 | 4 | 25 | 8 | 21 | 8 | 21 |
182 | 83 | 0 | 76 | 7 | 48 | 35 | 55 | 28 | 63 | 20 | 34 | 49 | 43 | 40 | 47 | 36 |
183 | 175 | 0 | 175 | 0 | 136 | 39 | 109 | 66 | 166 | 9 | 0 | 175 | 107 | 68 | 91 | 84 |
184 | 27 | 0 | 27 | 0 | 14 | 13 | 10 | 17 | 27 | 0 | 0 | 27 | 20 | 7 | 5 | 22 |
185 | 1059 | 0 | 1051 | 8 | 936 | 123 | 762 | 297 | 989 | 70 | 328 | 731 | 814 | 245 | 740 | 319 |
186 | 156 | 0 | 156 | 0 | 99 | 57 | 51 | 105 | 43 | 113 | 48 | 108 | 36 | 120 | 30 | 126 |
187 | 663 | 0 | 662 | 1 | 469 | 194 | 259 | 404 | 241 | 422 | 196 | 467 | 95 | 568 | 133 | 530 |
188 | 370 | 1 | 364 | 7 | 244 | 127 | 116 | 255 | 157 | 214 | 97 | 274 | 98 | 273 | 78 | 293 |
189 | 166 | 0 | 166 | 0 | 111 | 55 | 57 | 109 | 52 | 114 | 53 | 113 | 39 | 127 | 32 | 134 |
190 | 569 | 0 | 555 | 14 | 471 | 98 | 245 | 324 | 237 | 332 | 162 | 407 | 106 | 463 | 144 | 425 |
191 | 295 | 1 | 287 | 9 | 194 | 102 | 82 | 214 | 130 | 166 | 81 | 215 | 84 | 212 | 64 | 232 |
192 | 243 | 0 | 231 | 12 | 199 | 44 | 154 | 89 | 147 | 96 | 85 | 158 | 127 | 116 | 128 | 115 |
193 | 49 | 0 | 48 | 1 | 48 | 1 | 29 | 20 | 17 | 32 | 10 | 39 | 17 | 32 | 17 | 32 |
194 | 538 | 0 | 536 | 2 | 509 | 29 | 270 | 268 | 259 | 279 | 145 | 393 | 177 | 361 | 175 | 363 |
195 | 62 | 0 | 60 | 2 | 61 | 1 | 34 | 28 | 17 | 45 | 15 | 47 | 17 | 45 | 17 | 45 |
196 | 1378 | 0 | 1353 | 25 | 1099 | 279 | 620 | 758 | 1118 | 260 | 457 | 921 | 668 | 710 | 698 | 680 |
197 | 361 | 0 | 360 | 1 | 342 | 19 | 268 | 93 | 350 | 11 | 98 | 263 | 254 | 107 | 239 | 122 |
198 | 300 | 0 | 294 | 6 | 273 | 27 | 246 | 54 | 223 | 77 | 109 | 191 | 152 | 148 | 153 | 147 |
199 | 935 | 0 | 914 | 21 | 784 | 151 | 505 | 430 | 841 | 94 | 206 | 729 | 444 | 491 | 518 | 417 |
200 | 190 | 0 | 185 | 5 | 154 | 36 | 86 | 104 | 121 | 69 | 49 | 141 | 45 | 145 | 52 | 138 |
201 | 100 | 0 | 96 | 4 | 74 | 26 | 21 | 79 | 73 | 27 | 2 | 98 | 4 | 96 | 56 | 44 |
202 | 178 | 0 | 172 | 6 | 103 | 75 | 84 | 94 | 114 | 64 | 37 | 141 | 46 | 132 | 49 | 129 |
203 | 71 | 0 | 71 | 0 | 53 | 18 | 42 | 29 | 51 | 20 | 32 | 39 | 32 | 39 | 41 | 30 |
204 | 311 | 0 | 300 | 11 | 179 | 132 | 140 | 171 | 258 | 53 | 198 | 113 | 131 | 180 | 203 | 108 |
205 | 218 | 0 | 190 | 28 | 154 | 64 | 118 | 100 | 190 | 28 | 118 | 100 | 60 | 158 | 60 | 158 |
206 | 136 | 0 | 134 | 2 | 118 | 18 | 57 | 79 | 126 | 10 | 52 | 84 | 71 | 65 | 34 | 102 |
207 | 136 | 0 | 136 | 0 | 104 | 32 | 34 | 102 | 34 | 102 | 52 | 84 | 34 | 102 | 34 | 102 |
208 | 198 | 0 | 196 | 2 | 148 | 50 | 127 | 71 | 104 | 94 | 48 | 150 | 16 | 182 | 71 | 127 |
209 | 2046 | 1108 | 2866 | 288 | 1790 | 1364 | 570 | 2584 | 2279 | 875 | 557 | 2597 | 802 | 2352 | 810 | 2344 |
210 | 6554 | 3781 | 10013 | 322 | 10097 | 238 | 9632 | 703 | 10326 | 9 | 9774 | 561 | 8971 | 1364 | 9315 | 1020 |
211 | 295 | 21 | 312 | 4 | 299 | 17 | 292 | 24 | 306 | 10 | 260 | 56 | 290 | 26 | 283 | 33 |
212 | 70 | 0 | 70 | 0 | 70 | 0 | 69 | 1 | 70 | 0 | 70 | 0 | 70 | 0 | 70 | 0 |
The command AbsoluteTiming[] was used in Mathematica to obtain the elapsed time for each integrate call. In Maple, the command Usage was used as in the following example
cpu_time := Usage(assign ('result_of_int',int(expr,x)),output='realtime'
For all other CAS systems, the elapsed time to complete each integral was found by taking the difference between the time after the call completed from the time before the call was made. This was done using Python’s time.time() call.
All elapsed times shown are in seconds. A time limit of 3 CPU minutes was used for each integral. If the integrate command did not complete within this time limit, the integral was aborted and considered to have failed and assigned an F grade. The time used by failed integrals due to time out was not counted in the final statistics.
A verification phase was applied on the result of integration for Rubi and Mathematica.
Future version of this report will implement verification for the other CAS systems. For the integrals whose result was not run through a verification phase, it is assumed that the antiderivative was correct.
Verification phase also had 3 minutes time out. An integral whose result was not verified could still be correct, but further investigation is needed on those integrals. These integrals were marked in the summary table below and also in each integral separate section so they are easy to identify and locate.
Since tests were run in a batch mode, and using an automated script, then any integral where Maxima needed an interactive response from the user to answer a question during the evaluation of the integral will fail.
The exception raised is ValueError. Therefore Maxima results is lower than what would result if Maxima was run directly and each question was answered correctly.
The percentage of such failures were not counted for each test file, but for an example, for the Timofeev test file, there were about 14 such integrals out of total 705, or about 2 percent. This percentage can be higher or lower depending on the specific input test file.
Such integrals can be identified by looking at the output of the integration in each section for Maxima. The exception message will indicate the cause of error.
Maxima integrate was run using SageMath with the following settings set by default
'besselexpand : true' 'display2d : false' 'domain : complex' 'keepfloat : true' 'load(to_poly_solve)' 'load(simplify_sum)' 'load(abs_integrate)' 'load(diag)'
SageMath automatic loading of Maxima abs_integrate was found to cause some problems. So the following code was added to disable this effect.
from sage.interfaces.maxima_lib import maxima_lib maxima_lib.set('extra_definite_integration_methods', '[]') maxima_lib.set('extra_integration_methods', '[]')
See https://ask.sagemath.org/question/43088/integrate-results-that-are-different-from-using-maxima/ for reference.
There were few integrals which failed due to SageMath interface and not because FriCAS system could not do the integration.
These will fail With error Exception raised: NotImplementedError.
The number of such cases seems to be very small. About 1 or 2 percent of all integrals. These can be identified by looking at the exception message given in the result.
For Mathematica, Rubi, and Maple, the builtin system function LeafSize was used to find the leaf size of each antiderivative.
The other CAS systems (SageMath and Sympy) do not have special builtin function for this purpose at this time. Therefore the leaf size for Fricas and Sympy antiderivative was determined using the following function, thanks to user slelievre at https://ask.sagemath.org/question/57123/could-we-have-a-leaf_count-function-in-base-sagemath/
def tree_size(expr): r""" Return the tree size of this expression. """ if expr not in SR: # deal with lists, tuples, vectors return 1 + sum(tree_size(a) for a in expr) expr = SR(expr) x, aa = expr.operator(), expr.operands() if x is None: return 1 else: return 1 + sum(tree_size(a) for a in aa)
For Sympy, which was called directly from Python, the following code was used to obtain the leafsize of its result
try: # 1.7 is a fudge factor since it is low side from actual leaf count leafCount = round(1.7*count_ops(anti)) except Exception as ee: leafCount =1
Matlab’s symbolic toolbox does not have a leaf count function to measure the size of the antiderivative. Maple was used to determine the leaf size of Mupad output by post processing Mupad result.
Currently no grading of the antiderivative for Mupad is implemented. If it can integrate the problem, it was assigned a B grade automatically as a placeholder. In the future, when grading function is implemented for Mupad, the tests will be rerun again.
The following is an example of using Matlab’s symbolic toolbox (Mupad) to solve an integral
integrand = evalin(symengine,'cos(x)*sin(x)') the_variable = evalin(symengine,'x') anti = int(integrand,the_variable)
Which gives sin(x)^2/2
The following diagram gives a high level view of the current test build system.