Integral number [65] \[ \int \frac {\text {ArcTan}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx \]
[B] time = 0.306806 (sec), size = 163 ,normalized size = 7.09 \[ \frac {6 \text {Gamma}\left (\frac {11}{6}\right ) \text {Gamma}\left (\frac {7}{3}\right ) \left (15+10 (a+b x) \text {ArcTan}(a+b x)+\frac {4 (a+b x) \text {ArcTan}(a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{1+(a+b x)^2}\right )}{1+(a+b x)^2}\right )+\frac {5 \sqrt [3]{2} \sqrt {\pi } \text {Gamma}\left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{1+(a+b x)^2}\right )}{1+(a+b x)^2}}{20 b \sqrt [3]{1+a^2+2 a b x+b^2 x^2} \text {Gamma}\left (\frac {11}{6}\right ) \text {Gamma}\left (\frac {7}{3}\right )} \]
[In]
[Out]
Integral number [66] \[ \int \frac {\text {ArcTan}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx \]
[B] time = 0.122715 (sec), size = 165 ,normalized size = 6.6 \[ \frac {6 \text {Gamma}\left (\frac {11}{6}\right ) \text {Gamma}\left (\frac {7}{3}\right ) \left (15+10 (a+b x) \text {ArcTan}(a+b x)+\frac {4 (a+b x) \text {ArcTan}(a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{1+(a+b x)^2}\right )}{1+(a+b x)^2}\right )+\frac {5 \sqrt [3]{2} \sqrt {\pi } \text {Gamma}\left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{1+(a+b x)^2}\right )}{1+(a+b x)^2}}{20 b \sqrt [3]{c \left (1+a^2+2 a b x+b^2 x^2\right )} \text {Gamma}\left (\frac {11}{6}\right ) \text {Gamma}\left (\frac {7}{3}\right )} \]
[In]
[Out]
Integral number [69] \[ \int \frac {(a+b x)^2 \text {ArcTan}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx \]
[B] time = 4.93177 (sec), size = 181 ,normalized size = 6.03 \[ -\frac {3 \left (1+(a+b x)^2\right )^{2/3} \left (\frac {5 \sqrt [3]{2} \sqrt {\pi } \text {Gamma}\left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{1+(a+b x)^2}\right )}{\left (1+(a+b x)^2\right )^2}+\text {Gamma}\left (\frac {11}{6}\right ) \text {Gamma}\left (\frac {7}{3}\right ) \left (15+\frac {90}{1+(a+b x)^2}+\frac {24 (a+b x) \text {ArcTan}(a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{1+(a+b x)^2}\right )}{\left (1+(a+b x)^2\right )^2}+5 \text {ArcTan}(a+b x) (-4 (a+b x)+6 \sin (2 \text {ArcTan}(a+b x)))\right )\right )}{140 b \text {Gamma}\left (\frac {11}{6}\right ) \text {Gamma}\left (\frac {7}{3}\right )} \]
[In]
[Out]
Integral number [70] \[ \int \frac {(a+b x)^2 \text {ArcTan}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx \]
[B] time = 0.632954 (sec), size = 225 ,normalized size = 7.03 \[ -\frac {3 \sqrt [3]{1+a^2+2 a b x+b^2 x^2} \left (1+(a+b x)^2\right )^{2/3} \left (\frac {5 \sqrt [3]{2} \sqrt {\pi } \text {Gamma}\left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{1+(a+b x)^2}\right )}{\left (1+(a+b x)^2\right )^2}+\text {Gamma}\left (\frac {11}{6}\right ) \text {Gamma}\left (\frac {7}{3}\right ) \left (15+\frac {90}{1+(a+b x)^2}+\frac {24 (a+b x) \text {ArcTan}(a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{1+(a+b x)^2}\right )}{\left (1+(a+b x)^2\right )^2}+5 \text {ArcTan}(a+b x) (-4 (a+b x)+6 \sin (2 \text {ArcTan}(a+b x)))\right )\right )}{140 b \sqrt [3]{c \left (1+a^2+2 a b x+b^2 x^2\right )} \text {Gamma}\left (\frac {11}{6}\right ) \text {Gamma}\left (\frac {7}{3}\right )} \]
[In]
[Out]