3.1.66 \(\int \frac {\sqrt {1+x^4}}{1-x^4} \, dx\) [66]

Optimal. Leaf size=53 \[ \frac {\tan ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{2 \sqrt {2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{2 \sqrt {2}} \]

[Out]

1/4*arctan(x*2^(1/2)/(x^4+1)^(1/2))*2^(1/2)+1/4*arctanh(x*2^(1/2)/(x^4+1)^(1/2))*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 53, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {413, 218, 212, 209} \begin {gather*} \frac {\text {ArcTan}\left (\frac {\sqrt {2} x}{\sqrt {x^4+1}}\right )}{2 \sqrt {2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {x^4+1}}\right )}{2 \sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 + x^4]/(1 - x^4),x]

[Out]

ArcTan[(Sqrt[2]*x)/Sqrt[1 + x^4]]/(2*Sqrt[2]) + ArcTanh[(Sqrt[2]*x)/Sqrt[1 + x^4]]/(2*Sqrt[2])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 413

Int[Sqrt[(a_) + (b_.)*(x_)^4]/((c_) + (d_.)*(x_)^4), x_Symbol] :> Dist[a/c, Subst[Int[1/(1 - 4*a*b*x^4), x], x
, x/Sqrt[a + b*x^4]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] && PosQ[a*b]

Rubi steps

\begin {align*} \int \frac {\sqrt {1+x^4}}{1-x^4} \, dx &=\text {Subst}\left (\int \frac {1}{1-4 x^4} \, dx,x,\frac {x}{\sqrt {1+x^4}}\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {1}{1-2 x^2} \, dx,x,\frac {x}{\sqrt {1+x^4}}\right )+\frac {1}{2} \text {Subst}\left (\int \frac {1}{1+2 x^2} \, dx,x,\frac {x}{\sqrt {1+x^4}}\right )\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{2 \sqrt {2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{2 \sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.17, size = 44, normalized size = 0.83 \begin {gather*} \frac {\tan ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )+\tanh ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{2 \sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 + x^4]/(1 - x^4),x]

[Out]

(ArcTan[(Sqrt[2]*x)/Sqrt[1 + x^4]] + ArcTanh[(Sqrt[2]*x)/Sqrt[1 + x^4]])/(2*Sqrt[2])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.28, size = 365, normalized size = 6.89

method result size
elliptic \(\frac {\left (-\frac {\ln \left (-1+\frac {\sqrt {x^{4}+1}\, \sqrt {2}}{2 x}\right )}{4}+\frac {\ln \left (1+\frac {\sqrt {x^{4}+1}\, \sqrt {2}}{2 x}\right )}{4}-\frac {\arctan \left (\frac {\sqrt {x^{4}+1}\, \sqrt {2}}{2 x}\right )}{2}\right ) \sqrt {2}}{2}\) \(65\)
trager \(-\frac {\RootOf \left (\textit {\_Z}^{2}-2\right ) \ln \left (\frac {\RootOf \left (\textit {\_Z}^{2}-2\right ) x -\sqrt {x^{4}+1}}{\left (1+x \right ) \left (-1+x \right )}\right )}{4}+\frac {\RootOf \left (\textit {\_Z}^{2}+2\right ) \ln \left (-\frac {\RootOf \left (\textit {\_Z}^{2}+2\right ) x -\sqrt {x^{4}+1}}{x^{2}+1}\right )}{4}\) \(76\)
default \(-\frac {\sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticF \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )}{\left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}}+\frac {i \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticF \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )}{2 \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}}-\frac {\left (-1\right )^{\frac {3}{4}} \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticPi \left (\left (-1\right )^{\frac {1}{4}} x , -i, -\sqrt {-i}\, \left (-1\right )^{\frac {3}{4}}\right )}{\sqrt {x^{4}+1}}-\frac {i \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \left (\EllipticF \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )-\EllipticE \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )\right )}{2 \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}}-\frac {i \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticE \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )}{2 \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}}-\frac {\left (-1\right )^{\frac {3}{4}} \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticPi \left (\left (-1\right )^{\frac {1}{4}} x , i, -\sqrt {-i}\, \left (-1\right )^{\frac {3}{4}}\right )}{\sqrt {x^{4}+1}}\) \(365\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+1)^(1/2)/(-x^4+1),x,method=_RETURNVERBOSE)

[Out]

-1/(1/2*2^(1/2)+1/2*I*2^(1/2))*(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*EllipticF(x*(1/2*2^(1/2)+1/2*I*2^
(1/2)),I)+1/2*I/(1/2*2^(1/2)+1/2*I*2^(1/2))*(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*EllipticF(x*(1/2*2^(
1/2)+1/2*I*2^(1/2)),I)-(-1)^(3/4)*(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*EllipticPi((-1)^(1/4)*x,-I,(-I
)^(1/2)/(-1)^(1/4))-1/2*I/(1/2*2^(1/2)+1/2*I*2^(1/2))*(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*(EllipticF
(x*(1/2*2^(1/2)+1/2*I*2^(1/2)),I)-EllipticE(x*(1/2*2^(1/2)+1/2*I*2^(1/2)),I))-1/2*I/(1/2*2^(1/2)+1/2*I*2^(1/2)
)*(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*EllipticE(x*(1/2*2^(1/2)+1/2*I*2^(1/2)),I)-(-1)^(3/4)*(1-I*x^2
)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*EllipticPi((-1)^(1/4)*x,I,(-I)^(1/2)/(-1)^(1/4))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)^(1/2)/(-x^4+1),x, algorithm="maxima")

[Out]

-integrate(sqrt(x^4 + 1)/(x^4 - 1), x)

________________________________________________________________________________________

Fricas [A]
time = 1.46, size = 61, normalized size = 1.15 \begin {gather*} \frac {1}{4} \, \sqrt {2} \arctan \left (\frac {\sqrt {2} x}{\sqrt {x^{4} + 1}}\right ) + \frac {1}{8} \, \sqrt {2} \log \left (\frac {x^{4} + 2 \, \sqrt {2} \sqrt {x^{4} + 1} x + 2 \, x^{2} + 1}{x^{4} - 2 \, x^{2} + 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)^(1/2)/(-x^4+1),x, algorithm="fricas")

[Out]

1/4*sqrt(2)*arctan(sqrt(2)*x/sqrt(x^4 + 1)) + 1/8*sqrt(2)*log((x^4 + 2*sqrt(2)*sqrt(x^4 + 1)*x + 2*x^2 + 1)/(x
^4 - 2*x^2 + 1))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {\sqrt {x^{4} + 1}}{x^{4} - 1}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+1)**(1/2)/(-x**4+1),x)

[Out]

-Integral(sqrt(x**4 + 1)/(x**4 - 1), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)^(1/2)/(-x^4+1),x, algorithm="giac")

[Out]

integrate(-sqrt(x^4 + 1)/(x^4 - 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} -\int \frac {\sqrt {x^4+1}}{x^4-1} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^4 + 1)^(1/2)/(x^4 - 1),x)

[Out]

-int((x^4 + 1)^(1/2)/(x^4 - 1), x)

________________________________________________________________________________________