3.1.11 \(\int \frac {x \log (1+x^2) \log (x+\sqrt {1+x^2})}{\sqrt {1+x^2}} \, dx\) [11]

Optimal. Leaf size=68 \[ 4 x-2 \tan ^{-1}(x)-x \log \left (1+x^2\right )-2 \sqrt {1+x^2} \log \left (x+\sqrt {1+x^2}\right )+\sqrt {1+x^2} \log \left (1+x^2\right ) \log \left (x+\sqrt {1+x^2}\right ) \]

[Out]

4*x-2*arctan(x)-x*ln(x^2+1)-2*ln(x+(x^2+1)^(1/2))*(x^2+1)^(1/2)+ln(x^2+1)*ln(x+(x^2+1)^(1/2))*(x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 8, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.276, Rules used = {267, 2634, 8, 2637, 12, 2498, 327, 209} \begin {gather*} -2 \text {ArcTan}(x)+x \left (-\log \left (x^2+1\right )\right )+\sqrt {x^2+1} \log \left (x^2+1\right ) \log \left (\sqrt {x^2+1}+x\right )-2 \sqrt {x^2+1} \log \left (\sqrt {x^2+1}+x\right )+4 x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*Log[1 + x^2]*Log[x + Sqrt[1 + x^2]])/Sqrt[1 + x^2],x]

[Out]

4*x - 2*ArcTan[x] - x*Log[1 + x^2] - 2*Sqrt[1 + x^2]*Log[x + Sqrt[1 + x^2]] + Sqrt[1 + x^2]*Log[1 + x^2]*Log[x
 + Sqrt[1 + x^2]]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2498

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)], x_Symbol] :> Simp[x*Log[c*(d + e*x^n)^p], x] - Dist[e*n*p, Int[
x^n/(d + e*x^n), x], x] /; FreeQ[{c, d, e, n, p}, x]

Rule 2634

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*(D[u, x]
/u), x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]

Rule 2637

Int[Log[v_]*Log[w_]*(u_), x_Symbol] :> With[{z = IntHide[u, x]}, Dist[Log[v]*Log[w], z, x] + (-Int[SimplifyInt
egrand[z*Log[w]*(D[v, x]/v), x], x] - Int[SimplifyIntegrand[z*Log[v]*(D[w, x]/w), x], x]) /; InverseFunctionFr
eeQ[z, x]] /; InverseFunctionFreeQ[v, x] && InverseFunctionFreeQ[w, x]

Rubi steps

\begin {align*} \int \frac {x \log \left (1+x^2\right ) \log \left (x+\sqrt {1+x^2}\right )}{\sqrt {1+x^2}} \, dx &=\sqrt {1+x^2} \log \left (1+x^2\right ) \log \left (x+\sqrt {1+x^2}\right )-\int \log \left (1+x^2\right ) \, dx-\int \frac {2 x \log \left (x+\sqrt {1+x^2}\right )}{\sqrt {1+x^2}} \, dx\\ &=-x \log \left (1+x^2\right )+\sqrt {1+x^2} \log \left (1+x^2\right ) \log \left (x+\sqrt {1+x^2}\right )+2 \int \frac {x^2}{1+x^2} \, dx-2 \int \frac {x \log \left (x+\sqrt {1+x^2}\right )}{\sqrt {1+x^2}} \, dx\\ &=2 x-x \log \left (1+x^2\right )-2 \sqrt {1+x^2} \log \left (x+\sqrt {1+x^2}\right )+\sqrt {1+x^2} \log \left (1+x^2\right ) \log \left (x+\sqrt {1+x^2}\right )+2 \int 1 \, dx-2 \int \frac {1}{1+x^2} \, dx\\ &=4 x-2 \tan ^{-1}(x)-x \log \left (1+x^2\right )-2 \sqrt {1+x^2} \log \left (x+\sqrt {1+x^2}\right )+\sqrt {1+x^2} \log \left (1+x^2\right ) \log \left (x+\sqrt {1+x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 64, normalized size = 0.94 \begin {gather*} 4 x-2 \tan ^{-1}(x)-2 \sqrt {1+x^2} \log \left (x+\sqrt {1+x^2}\right )+\log \left (1+x^2\right ) \left (-x+\sqrt {1+x^2} \log \left (x+\sqrt {1+x^2}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*Log[1 + x^2]*Log[x + Sqrt[1 + x^2]])/Sqrt[1 + x^2],x]

[Out]

4*x - 2*ArcTan[x] - 2*Sqrt[1 + x^2]*Log[x + Sqrt[1 + x^2]] + Log[1 + x^2]*(-x + Sqrt[1 + x^2]*Log[x + Sqrt[1 +
 x^2]])

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {x \ln \left (x^{2}+1\right ) \ln \left (x +\sqrt {x^{2}+1}\right )}{\sqrt {x^{2}+1}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*ln(x^2+1)*ln(x+(x^2+1)^(1/2))/(x^2+1)^(1/2),x)

[Out]

int(x*ln(x^2+1)*ln(x+(x^2+1)^(1/2))/(x^2+1)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*log(x^2+1)*log(x+(x^2+1)^(1/2))/(x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-(2*x^2 - (x^2 + 1)*log(x^2 + 1) + 2)*log(x + sqrt(x^2 + 1))/sqrt(x^2 + 1) + integrate((log(x^2 + 1) - 2)/(x^2
 + sqrt(x^2 + 1)*x), x) - integrate(-(2*x^2 - (x^2 + 1)*log(x^2 + 1) + 2)/(sqrt(x^2 + 1)*x), x)

________________________________________________________________________________________

Fricas [A]
time = 0.87, size = 43, normalized size = 0.63 \begin {gather*} \sqrt {x^{2} + 1} {\left (\log \left (x^{2} + 1\right ) - 2\right )} \log \left (x + \sqrt {x^{2} + 1}\right ) - x \log \left (x^{2} + 1\right ) + 4 \, x - 2 \, \arctan \left (x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*log(x^2+1)*log(x+(x^2+1)^(1/2))/(x^2+1)^(1/2),x, algorithm="fricas")

[Out]

sqrt(x^2 + 1)*(log(x^2 + 1) - 2)*log(x + sqrt(x^2 + 1)) - x*log(x^2 + 1) + 4*x - 2*arctan(x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*ln(x**2+1)*ln(x+(x**2+1)**(1/2))/(x**2+1)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*log(x^2+1)*log(x+(x^2+1)^(1/2))/(x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x*log(x^2 + 1)*log(x + sqrt(x^2 + 1))/sqrt(x^2 + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,\ln \left (x^2+1\right )\,\ln \left (x+\sqrt {x^2+1}\right )}{\sqrt {x^2+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*log(x^2 + 1)*log(x + (x^2 + 1)^(1/2)))/(x^2 + 1)^(1/2),x)

[Out]

int((x*log(x^2 + 1)*log(x + (x^2 + 1)^(1/2)))/(x^2 + 1)^(1/2), x)

________________________________________________________________________________________