3.2.22 \(\int \frac {1}{a+b \sin (x)} \, dx\) [122]

Optimal. Leaf size=40 \[ \frac {2 \tan ^{-1}\left (\frac {b+a \tan \left (\frac {x}{2}\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}} \]

[Out]

2*arctan((b+a*tan(1/2*x))/(a^2-b^2)^(1/2))/(a^2-b^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 40, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {2739, 632, 210} \begin {gather*} \frac {2 \text {ArcTan}\left (\frac {a \tan \left (\frac {x}{2}\right )+b}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[x])^(-1),x]

[Out]

(2*ArcTan[(b + a*Tan[x/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[2*(e/d), Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{a+b \sin (x)} \, dx &=2 \text {Subst}\left (\int \frac {1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac {x}{2}\right )\right )\\ &=-\left (4 \text {Subst}\left (\int \frac {1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac {x}{2}\right )\right )\right )\\ &=\frac {2 \tan ^{-1}\left (\frac {b+a \tan \left (\frac {x}{2}\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 40, normalized size = 1.00 \begin {gather*} \frac {2 \tan ^{-1}\left (\frac {b+a \tan \left (\frac {x}{2}\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sin[x])^(-1),x]

[Out]

(2*ArcTan[(b + a*Tan[x/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2]

________________________________________________________________________________________

Maple [A]
time = 0.05, size = 39, normalized size = 0.98

method result size
default \(\frac {2 \arctan \left (\frac {2 a \tan \left (\frac {x}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}}\) \(39\)
risch \(-\frac {\ln \left ({\mathrm e}^{i x}+\frac {i a \sqrt {-a^{2}+b^{2}}-a^{2}+b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}}+\frac {\ln \left ({\mathrm e}^{i x}+\frac {i a \sqrt {-a^{2}+b^{2}}+a^{2}-b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}}\) \(119\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sin(x)),x,method=_RETURNVERBOSE)

[Out]

2/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*x)+2*b)/(a^2-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more de

________________________________________________________________________________________

Fricas [A]
time = 0.91, size = 148, normalized size = 3.70 \begin {gather*} \left [-\frac {\sqrt {-a^{2} + b^{2}} \log \left (\frac {{\left (2 \, a^{2} - b^{2}\right )} \cos \left (x\right )^{2} - 2 \, a b \sin \left (x\right ) - a^{2} - b^{2} + 2 \, {\left (a \cos \left (x\right ) \sin \left (x\right ) + b \cos \left (x\right )\right )} \sqrt {-a^{2} + b^{2}}}{b^{2} \cos \left (x\right )^{2} - 2 \, a b \sin \left (x\right ) - a^{2} - b^{2}}\right )}{2 \, {\left (a^{2} - b^{2}\right )}}, -\frac {\arctan \left (-\frac {a \sin \left (x\right ) + b}{\sqrt {a^{2} - b^{2}} \cos \left (x\right )}\right )}{\sqrt {a^{2} - b^{2}}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(x)),x, algorithm="fricas")

[Out]

[-1/2*sqrt(-a^2 + b^2)*log(((2*a^2 - b^2)*cos(x)^2 - 2*a*b*sin(x) - a^2 - b^2 + 2*(a*cos(x)*sin(x) + b*cos(x))
*sqrt(-a^2 + b^2))/(b^2*cos(x)^2 - 2*a*b*sin(x) - a^2 - b^2))/(a^2 - b^2), -arctan(-(a*sin(x) + b)/(sqrt(a^2 -
 b^2)*cos(x)))/sqrt(a^2 - b^2)]

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 141 vs. \(2 (31) = 62\).
time = 4.03, size = 141, normalized size = 3.52 \begin {gather*} \begin {cases} \tilde {\infty } \log {\left (\tan {\left (\frac {x}{2} \right )} \right )} & \text {for}\: a = 0 \wedge b = 0 \\\frac {\log {\left (\tan {\left (\frac {x}{2} \right )} \right )}}{b} & \text {for}\: a = 0 \\\frac {2 \sqrt {b^{2}}}{b^{2} \tan {\left (\frac {x}{2} \right )} - b \sqrt {b^{2}}} & \text {for}\: a = - \sqrt {b^{2}} \\- \frac {2 \sqrt {b^{2}}}{b^{2} \tan {\left (\frac {x}{2} \right )} + b \sqrt {b^{2}}} & \text {for}\: a = \sqrt {b^{2}} \\\frac {\log {\left (\tan {\left (\frac {x}{2} \right )} + \frac {b}{a} - \frac {\sqrt {- a^{2} + b^{2}}}{a} \right )}}{\sqrt {- a^{2} + b^{2}}} - \frac {\log {\left (\tan {\left (\frac {x}{2} \right )} + \frac {b}{a} + \frac {\sqrt {- a^{2} + b^{2}}}{a} \right )}}{\sqrt {- a^{2} + b^{2}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(x)),x)

[Out]

Piecewise((zoo*log(tan(x/2)), Eq(a, 0) & Eq(b, 0)), (log(tan(x/2))/b, Eq(a, 0)), (2*sqrt(b**2)/(b**2*tan(x/2)
- b*sqrt(b**2)), Eq(a, -sqrt(b**2))), (-2*sqrt(b**2)/(b**2*tan(x/2) + b*sqrt(b**2)), Eq(a, sqrt(b**2))), (log(
tan(x/2) + b/a - sqrt(-a**2 + b**2)/a)/sqrt(-a**2 + b**2) - log(tan(x/2) + b/a + sqrt(-a**2 + b**2)/a)/sqrt(-a
**2 + b**2), True))

________________________________________________________________________________________

Giac [A]
time = 0.97, size = 48, normalized size = 1.20 \begin {gather*} \frac {2 \, {\left (\pi \left \lfloor \frac {x}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, x\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(x)),x, algorithm="giac")

[Out]

2*(pi*floor(1/2*x/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*x) + b)/sqrt(a^2 - b^2)))/sqrt(a^2 - b^2)

________________________________________________________________________________________

Mupad [B]
time = 0.38, size = 45, normalized size = 1.12 \begin {gather*} \frac {2\,\mathrm {atan}\left (\frac {b}{\sqrt {a^2-b^2}}+\frac {a\,\mathrm {tan}\left (\frac {x}{2}\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*sin(x)),x)

[Out]

(2*atan(b/(a^2 - b^2)^(1/2) + (a*tan(x/2))/(a^2 - b^2)^(1/2)))/(a^2 - b^2)^(1/2)

________________________________________________________________________________________