3.1.19 \(\int \frac {x^2}{1+x^4} \, dx\) [19]

Optimal. Leaf size=85 \[ -\frac {\tan ^{-1}\left (1-\sqrt {2} x\right )}{2 \sqrt {2}}+\frac {\tan ^{-1}\left (1+\sqrt {2} x\right )}{2 \sqrt {2}}+\frac {\log \left (1-\sqrt {2} x+x^2\right )}{4 \sqrt {2}}-\frac {\log \left (1+\sqrt {2} x+x^2\right )}{4 \sqrt {2}} \]

[Out]

1/4*arctan(-1+x*2^(1/2))*2^(1/2)+1/4*arctan(1+x*2^(1/2))*2^(1/2)+1/8*ln(1+x^2-x*2^(1/2))*2^(1/2)-1/8*ln(1+x^2+
x*2^(1/2))*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.546, Rules used = {303, 1176, 631, 210, 1179, 642} \begin {gather*} -\frac {\text {ArcTan}\left (1-\sqrt {2} x\right )}{2 \sqrt {2}}+\frac {\text {ArcTan}\left (\sqrt {2} x+1\right )}{2 \sqrt {2}}+\frac {\log \left (x^2-\sqrt {2} x+1\right )}{4 \sqrt {2}}-\frac {\log \left (x^2+\sqrt {2} x+1\right )}{4 \sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/(1 + x^4),x]

[Out]

-1/2*ArcTan[1 - Sqrt[2]*x]/Sqrt[2] + ArcTan[1 + Sqrt[2]*x]/(2*Sqrt[2]) + Log[1 - Sqrt[2]*x + x^2]/(4*Sqrt[2])
- Log[1 + Sqrt[2]*x + x^2]/(4*Sqrt[2])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {x^2}{1+x^4} \, dx &=-\left (\frac {1}{2} \int \frac {1-x^2}{1+x^4} \, dx\right )+\frac {1}{2} \int \frac {1+x^2}{1+x^4} \, dx\\ &=\frac {1}{4} \int \frac {1}{1-\sqrt {2} x+x^2} \, dx+\frac {1}{4} \int \frac {1}{1+\sqrt {2} x+x^2} \, dx+\frac {\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx}{4 \sqrt {2}}+\frac {\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx}{4 \sqrt {2}}\\ &=\frac {\log \left (1-\sqrt {2} x+x^2\right )}{4 \sqrt {2}}-\frac {\log \left (1+\sqrt {2} x+x^2\right )}{4 \sqrt {2}}+\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} x\right )}{2 \sqrt {2}}-\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} x\right )}{2 \sqrt {2}}\\ &=-\frac {\tan ^{-1}\left (1-\sqrt {2} x\right )}{2 \sqrt {2}}+\frac {\tan ^{-1}\left (1+\sqrt {2} x\right )}{2 \sqrt {2}}+\frac {\log \left (1-\sqrt {2} x+x^2\right )}{4 \sqrt {2}}-\frac {\log \left (1+\sqrt {2} x+x^2\right )}{4 \sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 64, normalized size = 0.75 \begin {gather*} \frac {-2 \tan ^{-1}\left (1-\sqrt {2} x\right )+2 \tan ^{-1}\left (1+\sqrt {2} x\right )+\log \left (1-\sqrt {2} x+x^2\right )-\log \left (1+\sqrt {2} x+x^2\right )}{4 \sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/(1 + x^4),x]

[Out]

(-2*ArcTan[1 - Sqrt[2]*x] + 2*ArcTan[1 + Sqrt[2]*x] + Log[1 - Sqrt[2]*x + x^2] - Log[1 + Sqrt[2]*x + x^2])/(4*
Sqrt[2])

________________________________________________________________________________________

Maple [A]
time = 0.02, size = 52, normalized size = 0.61

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{4}+1\right )}{\sum }\frac {\ln \left (-\textit {\_R} +x \right )}{\textit {\_R}}\right )}{4}\) \(22\)
default \(\frac {\sqrt {2}\, \left (\ln \left (\frac {1+x^{2}-x \sqrt {2}}{1+x^{2}+x \sqrt {2}}\right )+2 \arctan \left (1+x \sqrt {2}\right )+2 \arctan \left (-1+x \sqrt {2}\right )\right )}{8}\) \(52\)
meijerg \(\frac {x^{3} \sqrt {2}\, \ln \left (1-\sqrt {2}\, \left (x^{4}\right )^{\frac {1}{4}}+\sqrt {x^{4}}\right )}{8 \left (x^{4}\right )^{\frac {3}{4}}}+\frac {x^{3} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (x^{4}\right )^{\frac {1}{4}}}{2-\sqrt {2}\, \left (x^{4}\right )^{\frac {1}{4}}}\right )}{4 \left (x^{4}\right )^{\frac {3}{4}}}-\frac {x^{3} \sqrt {2}\, \ln \left (1+\sqrt {2}\, \left (x^{4}\right )^{\frac {1}{4}}+\sqrt {x^{4}}\right )}{8 \left (x^{4}\right )^{\frac {3}{4}}}+\frac {x^{3} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (x^{4}\right )^{\frac {1}{4}}}{2+\sqrt {2}\, \left (x^{4}\right )^{\frac {1}{4}}}\right )}{4 \left (x^{4}\right )^{\frac {3}{4}}}\) \(139\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(x^4+1),x,method=_RETURNVERBOSE)

[Out]

1/8*2^(1/2)*(ln((1+x^2-x*2^(1/2))/(1+x^2+x*2^(1/2)))+2*arctan(1+x*2^(1/2))+2*arctan(-1+x*2^(1/2)))

________________________________________________________________________________________

Maxima [A]
time = 2.52, size = 72, normalized size = 0.85 \begin {gather*} \frac {1}{4} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (2 \, x + \sqrt {2}\right )}\right ) + \frac {1}{4} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (2 \, x - \sqrt {2}\right )}\right ) - \frac {1}{8} \, \sqrt {2} \log \left (x^{2} + \sqrt {2} x + 1\right ) + \frac {1}{8} \, \sqrt {2} \log \left (x^{2} - \sqrt {2} x + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^4+1),x, algorithm="maxima")

[Out]

1/4*sqrt(2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2))) + 1/4*sqrt(2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2))) - 1/8*sqrt(2
)*log(x^2 + sqrt(2)*x + 1) + 1/8*sqrt(2)*log(x^2 - sqrt(2)*x + 1)

________________________________________________________________________________________

Fricas [A]
time = 0.50, size = 100, normalized size = 1.18 \begin {gather*} -\frac {1}{2} \, \sqrt {2} \arctan \left (-\sqrt {2} x + \sqrt {2} \sqrt {x^{2} + \sqrt {2} x + 1} - 1\right ) - \frac {1}{2} \, \sqrt {2} \arctan \left (-\sqrt {2} x + \sqrt {2} \sqrt {x^{2} - \sqrt {2} x + 1} + 1\right ) - \frac {1}{8} \, \sqrt {2} \log \left (4 \, x^{2} + 4 \, \sqrt {2} x + 4\right ) + \frac {1}{8} \, \sqrt {2} \log \left (4 \, x^{2} - 4 \, \sqrt {2} x + 4\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^4+1),x, algorithm="fricas")

[Out]

-1/2*sqrt(2)*arctan(-sqrt(2)*x + sqrt(2)*sqrt(x^2 + sqrt(2)*x + 1) - 1) - 1/2*sqrt(2)*arctan(-sqrt(2)*x + sqrt
(2)*sqrt(x^2 - sqrt(2)*x + 1) + 1) - 1/8*sqrt(2)*log(4*x^2 + 4*sqrt(2)*x + 4) + 1/8*sqrt(2)*log(4*x^2 - 4*sqrt
(2)*x + 4)

________________________________________________________________________________________

Sympy [A]
time = 0.05, size = 73, normalized size = 0.86 \begin {gather*} \frac {\sqrt {2} \log {\left (x^{2} - \sqrt {2} x + 1 \right )}}{8} - \frac {\sqrt {2} \log {\left (x^{2} + \sqrt {2} x + 1 \right )}}{8} + \frac {\sqrt {2} \operatorname {atan}{\left (\sqrt {2} x - 1 \right )}}{4} + \frac {\sqrt {2} \operatorname {atan}{\left (\sqrt {2} x + 1 \right )}}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(x**4+1),x)

[Out]

sqrt(2)*log(x**2 - sqrt(2)*x + 1)/8 - sqrt(2)*log(x**2 + sqrt(2)*x + 1)/8 + sqrt(2)*atan(sqrt(2)*x - 1)/4 + sq
rt(2)*atan(sqrt(2)*x + 1)/4

________________________________________________________________________________________

Giac [A]
time = 0.45, size = 72, normalized size = 0.85 \begin {gather*} \frac {1}{4} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (2 \, x + \sqrt {2}\right )}\right ) + \frac {1}{4} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (2 \, x - \sqrt {2}\right )}\right ) - \frac {1}{8} \, \sqrt {2} \log \left (x^{2} + \sqrt {2} x + 1\right ) + \frac {1}{8} \, \sqrt {2} \log \left (x^{2} - \sqrt {2} x + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^4+1),x, algorithm="giac")

[Out]

1/4*sqrt(2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2))) + 1/4*sqrt(2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2))) - 1/8*sqrt(2
)*log(x^2 + sqrt(2)*x + 1) + 1/8*sqrt(2)*log(x^2 - sqrt(2)*x + 1)

________________________________________________________________________________________

Mupad [B]
time = 0.21, size = 33, normalized size = 0.39 \begin {gather*} \sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,x\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {1}{4}-\frac {1}{4}{}\mathrm {i}\right )+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,x\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {1}{4}+\frac {1}{4}{}\mathrm {i}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(x^4 + 1),x)

[Out]

2^(1/2)*atan(2^(1/2)*x*(1/2 - 1i/2))*(1/4 - 1i/4) + 2^(1/2)*atan(2^(1/2)*x*(1/2 + 1i/2))*(1/4 + 1i/4)

________________________________________________________________________________________