3.3.3 \(\int \frac {1}{-1+x^3} \, dx\) [203]

Optimal. Leaf size=41 \[ -\frac {\tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {1}{3} \log (1-x)-\frac {1}{6} \log \left (1+x+x^2\right ) \]

[Out]

1/3*ln(1-x)-1/6*ln(x^2+x+1)-1/3*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.857, Rules used = {206, 31, 648, 632, 210, 642} \begin {gather*} -\frac {\text {ArcTan}\left (\frac {2 x+1}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {1}{6} \log \left (x^2+x+1\right )+\frac {1}{3} \log (1-x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-1 + x^3)^(-1),x]

[Out]

-(ArcTan[(1 + 2*x)/Sqrt[3]]/Sqrt[3]) + Log[1 - x]/3 - Log[1 + x + x^2]/6

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
 /; FreeQ[{a, b}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {1}{-1+x^3} \, dx &=\frac {1}{3} \int \frac {1}{-1+x} \, dx+\frac {1}{3} \int \frac {-2-x}{1+x+x^2} \, dx\\ &=\frac {1}{3} \log (1-x)-\frac {1}{6} \int \frac {1+2 x}{1+x+x^2} \, dx-\frac {1}{2} \int \frac {1}{1+x+x^2} \, dx\\ &=\frac {1}{3} \log (1-x)-\frac {1}{6} \log \left (1+x+x^2\right )+\text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )\\ &=-\frac {\tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {1}{3} \log (1-x)-\frac {1}{6} \log \left (1+x+x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.00, size = 41, normalized size = 1.00 \begin {gather*} -\frac {\tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {1}{3} \log (1-x)-\frac {1}{6} \log \left (1+x+x^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-1 + x^3)^(-1),x]

[Out]

-(ArcTan[(1 + 2*x)/Sqrt[3]]/Sqrt[3]) + Log[1 - x]/3 - Log[1 + x + x^2]/6

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 33, normalized size = 0.80

method result size
risch \(\frac {\ln \left (-1+x \right )}{3}-\frac {\ln \left (x^{2}+x +1\right )}{6}-\frac {\sqrt {3}\, \arctan \left (\frac {2 \sqrt {3}\, \left (x +\frac {1}{2}\right )}{3}\right )}{3}\) \(31\)
default \(\frac {\ln \left (-1+x \right )}{3}-\frac {\ln \left (x^{2}+x +1\right )}{6}-\frac {\arctan \left (\frac {\left (1+2 x \right ) \sqrt {3}}{3}\right ) \sqrt {3}}{3}\) \(33\)
meijerg \(\frac {x \left (\ln \left (1-\left (x^{3}\right )^{\frac {1}{3}}\right )-\frac {\ln \left (1+\left (x^{3}\right )^{\frac {1}{3}}+\left (x^{3}\right )^{\frac {2}{3}}\right )}{2}-\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (x^{3}\right )^{\frac {1}{3}}}{2+\left (x^{3}\right )^{\frac {1}{3}}}\right )\right )}{3 \left (x^{3}\right )^{\frac {1}{3}}}\) \(62\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3-1),x,method=_RETURNVERBOSE)

[Out]

1/3*ln(-1+x)-1/6*ln(x^2+x+1)-1/3*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 2.20, size = 32, normalized size = 0.78 \begin {gather*} -\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - \frac {1}{6} \, \log \left (x^{2} + x + 1\right ) + \frac {1}{3} \, \log \left (x - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^3-1),x, algorithm="maxima")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/6*log(x^2 + x + 1) + 1/3*log(x - 1)

________________________________________________________________________________________

Fricas [A]
time = 0.96, size = 32, normalized size = 0.78 \begin {gather*} -\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - \frac {1}{6} \, \log \left (x^{2} + x + 1\right ) + \frac {1}{3} \, \log \left (x - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^3-1),x, algorithm="fricas")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/6*log(x^2 + x + 1) + 1/3*log(x - 1)

________________________________________________________________________________________

Sympy [A]
time = 0.05, size = 41, normalized size = 1.00 \begin {gather*} \frac {\log {\left (x - 1 \right )}}{3} - \frac {\log {\left (x^{2} + x + 1 \right )}}{6} - \frac {\sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} x}{3} + \frac {\sqrt {3}}{3} \right )}}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**3-1),x)

[Out]

log(x - 1)/3 - log(x**2 + x + 1)/6 - sqrt(3)*atan(2*sqrt(3)*x/3 + sqrt(3)/3)/3

________________________________________________________________________________________

Giac [A]
time = 0.46, size = 33, normalized size = 0.80 \begin {gather*} -\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - \frac {1}{6} \, \log \left (x^{2} + x + 1\right ) + \frac {1}{3} \, \log \left ({\left | x - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^3-1),x, algorithm="giac")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/6*log(x^2 + x + 1) + 1/3*log(abs(x - 1))

________________________________________________________________________________________

Mupad [B]
time = 0.06, size = 46, normalized size = 1.12 \begin {gather*} \frac {\ln \left (x-1\right )}{3}+\ln \left (x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (-\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )-\ln \left (x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3 - 1),x)

[Out]

log(x - 1)/3 + log(x - (3^(1/2)*1i)/2 + 1/2)*((3^(1/2)*1i)/6 - 1/6) - log(x + (3^(1/2)*1i)/2 + 1/2)*((3^(1/2)*
1i)/6 + 1/6)

________________________________________________________________________________________