3.3.56 \(\int 3^{2^x} 4^x \, dx\) [256]

Optimal. Leaf size=33 \[ -\frac {3^{2^x}}{\log (2) \log ^2(3)}+\frac {2^x 3^{2^x}}{\log (2) \log (3)} \]

[Out]

-3^(2^x)/ln(2)/ln(3)^2+2^x*3^(2^x)/ln(2)/ln(3)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2320, 2207, 2225} \begin {gather*} \frac {2^x 3^{2^x}}{\log (2) \log (3)}-\frac {3^{2^x}}{\log (2) \log ^2(3)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[3^2^x*4^x,x]

[Out]

-(3^2^x/(Log[2]*Log[3]^2)) + (2^x*3^2^x)/(Log[2]*Log[3])

Rule 2207

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^m*
((b*F^(g*(e + f*x)))^n/(f*g*n*Log[F])), x] - Dist[d*(m/(f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !TrueQ[$UseGamma]

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

\begin {gather*} \begin {aligned} \text {Integral} &=\frac {\text {Subst}\left (\int 3^x x \, dx,x,2^x\right )}{\log (2)}\\ &=\frac {2^x 3^{2^x}}{\log (2) \log (3)}-\frac {\text {Subst}\left (\int 3^x \, dx,x,2^x\right )}{\log (2) \log (3)}\\ &=-\frac {3^{2^x}}{\log (2) \log ^2(3)}+\frac {2^x 3^{2^x}}{\log (2) \log (3)}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 22, normalized size = 0.67 \begin {gather*} \frac {3^{2^x} \left (-1+2^x \log (3)\right )}{\log (2) \log ^2(3)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[3^2^x*4^x,x]

[Out]

(3^2^x*(-1 + 2^x*Log[3]))/(Log[2]*Log[3]^2)

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 23, normalized size = 0.70

method result size
risch \(\frac {\left (2^{x} \ln \left (3\right )-1\right ) 3^{2^{x}}}{\ln \left (2\right ) \ln \left (3\right )^{2}}\) \(23\)
norman \(\frac {{\mathrm e}^{x \ln \left (2\right )} {\mathrm e}^{{\mathrm e}^{x \ln \left (2\right )} \ln \left (3\right )}}{\ln \left (2\right ) \ln \left (3\right )}-\frac {{\mathrm e}^{{\mathrm e}^{x \ln \left (2\right )} \ln \left (3\right )}}{\ln \left (2\right ) \ln \left (3\right )^{2}}\) \(44\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(4^x*3^(2^x),x,method=_RETURNVERBOSE)

[Out]

(2^x*ln(3)-1)/ln(2)/ln(3)^2*3^(2^x)

________________________________________________________________________________________

Maxima [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.45, size = 31, normalized size = 0.94 \begin {gather*} -\frac {4^{x} \Gamma \left (2, -4^{\frac {1}{2} \, x} \log \left (3\right )\right )}{4^{x} \log \left (3\right )^{2} \log \left (2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4^x*3^(2^x),x, algorithm="maxima")

[Out]

-4^x*gamma(2, -4^(1/2*x)*log(3))/(4^x*log(3)^2*log(2))

________________________________________________________________________________________

Fricas [A]
time = 0.57, size = 22, normalized size = 0.67 \begin {gather*} \frac {{\left (2^{x} \log \left (3\right ) - 1\right )} 3^{\left (2^{x}\right )}}{\log \left (3\right )^{2} \log \left (2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4^x*3^(2^x),x, algorithm="fricas")

[Out]

(2^x*log(3) - 1)*3^(2^x)/(log(3)^2*log(2))

________________________________________________________________________________________

Sympy [A]
time = 0.06, size = 24, normalized size = 0.73 \begin {gather*} \frac {\left (2^{x} \log {\left (3 \right )} - 1\right ) e^{2^{x} \log {\left (3 \right )}}}{\log {\left (2 \right )} \log {\left (3 \right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4**x*3**(2**x),x)

[Out]

(2**x*log(3) - 1)*exp(2**x*log(3))/(log(2)*log(3)**2)

________________________________________________________________________________________

Giac [A]
time = 0.46, size = 51, normalized size = 1.55 \begin {gather*} \frac {2^{x} e^{\left (2^{x} \log \left (3\right ) + 2 \, x \log \left (2\right )\right )} \log \left (3\right ) - e^{\left (2^{x} \log \left (3\right ) + 2 \, x \log \left (2\right )\right )}}{2^{2 \, x} \log \left (3\right )^{2} \log \left (2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4^x*3^(2^x),x, algorithm="giac")

[Out]

(2^x*e^(2^x*log(3) + 2*x*log(2))*log(3) - e^(2^x*log(3) + 2*x*log(2)))/(2^(2*x)*log(3)^2*log(2))

________________________________________________________________________________________

Mupad [B]
time = 0.14, size = 22, normalized size = 0.67 \begin {gather*} \frac {3^{2^x}\,\left (2^x\,\ln \left (3\right )-1\right )}{\ln \left (2\right )\,{\ln \left (3\right )}^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(3^(2^x)*4^x,x)

[Out]

(3^(2^x)*(2^x*log(3) - 1))/(log(2)*log(3)^2)

________________________________________________________________________________________

Chatgpt [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {not solved} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

int(4^x*3^(2^x),x)

[Out]

not solved

________________________________________________________________________________________