3.2.22 \(\int \frac {\sqrt {x}}{a+b x^2} \, dx\) [122]

Optimal. Leaf size=101 \[ \frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{\frac {a}{b}} \sqrt {x}}{\sqrt {\frac {a}{b}}-x}\right )-\log \left (\frac {\sqrt {\frac {a}{b}}+\sqrt {2} \sqrt [4]{\frac {a}{b}} \sqrt {x}+x}{\sqrt {a+b x^2}}\right )}{\sqrt {2} \sqrt [4]{\frac {a}{b}} b} \]

[Out]

1/2/b/(a/b)^(1/4)*2^(1/2)*(-ln((x+(a/b)^(1/4)*2^(1/2)*x^(1/2)+(a/b)^(1/2))/(b*x^2+a)^(1/2))+arctan((a/b)^(1/4)
*2^(1/2)*x^(1/2)/((a/b)^(1/2)-x)))

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 192, normalized size of antiderivative = 1.90, number of steps used = 10, number of rules used = 7, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.467, Rules used = {335, 303, 1176, 631, 210, 1179, 642} \begin {gather*} -\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}-\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[x]/(a + b*x^2),x]

[Out]

-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(3/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[
x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(3/4)) + Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]
*a^(1/4)*b^(3/4)) - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]*a^(1/4)*b^(3/4))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {gather*} \begin {aligned} \text {Integral} &=2 \text {Subst}\left (\int \frac {x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )\\ &=-\frac {\text {Subst}\left (\int \frac {\sqrt {a}-\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{\sqrt {b}}+\frac {\text {Subst}\left (\int \frac {\sqrt {a}+\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{\sqrt {b}}\\ &=\frac {\text {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 b}+\frac {\text {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 b}+\frac {\text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}\\ &=\frac {\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}-\frac {\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{3/4}}-\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{3/4}}\\ &=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}-\frac {\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 91, normalized size = 0.90 \begin {gather*} -\frac {\arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )+\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{\sqrt {2} \sqrt [4]{a} b^{3/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x]/(a + b*x^2),x]

[Out]

-((ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] + ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])
/(Sqrt[a] + Sqrt[b]*x)])/(Sqrt[2]*a^(1/4)*b^(3/4)))

________________________________________________________________________________________

Maple [A]
time = 0.02, size = 106, normalized size = 1.05

method result size
derivativedivides \(\frac {\sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(106\)
default \(\frac {\sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(106\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)/(b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

1/4/b/(a/b)^(1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*2^(1/2)*x^(1/2)+(a/b)^(1/2))/(x+(a/b)^(1/4)*2^(1/2)*x^(1/2)+(a/b)
^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)-1))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 172 vs. \(2 (81) = 162\).
time = 0.44, size = 172, normalized size = 1.70 \begin {gather*} \frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{2 \, \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {\sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{2 \, \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{4 \, a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{4 \, a^{\frac {1}{4}} b^{\frac {3}{4}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

1/2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt
(a)*sqrt(b))*sqrt(b)) + 1/2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqr
t(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - 1/4*sqrt(2)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x +
 sqrt(a))/(a^(1/4)*b^(3/4)) + 1/4*sqrt(2)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)
*b^(3/4))

________________________________________________________________________________________

Fricas [A]
time = 0.61, size = 126, normalized size = 1.25 \begin {gather*} -2 \, \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} \arctan \left (\sqrt {-a b \sqrt {-\frac {1}{a b^{3}}} + x} b \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} - b \sqrt {x} \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}}\right ) + \frac {1}{2} \, \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} \log \left (a b^{2} \left (-\frac {1}{a b^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - \frac {1}{2} \, \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} \log \left (-a b^{2} \left (-\frac {1}{a b^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

-2*(-1/(a*b^3))^(1/4)*arctan(sqrt(-a*b*sqrt(-1/(a*b^3)) + x)*b*(-1/(a*b^3))^(1/4) - b*sqrt(x)*(-1/(a*b^3))^(1/
4)) + 1/2*(-1/(a*b^3))^(1/4)*log(a*b^2*(-1/(a*b^3))^(3/4) + sqrt(x)) - 1/2*(-1/(a*b^3))^(1/4)*log(-a*b^2*(-1/(
a*b^3))^(3/4) + sqrt(x))

________________________________________________________________________________________

Sympy [A]
time = 0.96, size = 104, normalized size = 1.03 \begin {gather*} \begin {cases} \frac {\tilde {\infty }}{\sqrt {x}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {3}{2}}}{3 a} & \text {for}\: b = 0 \\- \frac {2}{b \sqrt {x}} & \text {for}\: a = 0 \\\frac {\log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 b \sqrt [4]{- \frac {a}{b}}} - \frac {\log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 b \sqrt [4]{- \frac {a}{b}}} + \frac {\operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b \sqrt [4]{- \frac {a}{b}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1/2)/(b*x**2+a),x)

[Out]

Piecewise((zoo/sqrt(x), Eq(a, 0) & Eq(b, 0)), (2*x**(3/2)/(3*a), Eq(b, 0)), (-2/(b*sqrt(x)), Eq(a, 0)), (log(s
qrt(x) - (-a/b)**(1/4))/(2*b*(-a/b)**(1/4)) - log(sqrt(x) + (-a/b)**(1/4))/(2*b*(-a/b)**(1/4)) + atan(sqrt(x)/
(-a/b)**(1/4))/(b*(-a/b)**(1/4)), True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 182 vs. \(2 (81) = 162\).
time = 0.45, size = 182, normalized size = 1.80 \begin {gather*} \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a b^{3}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a b^{3}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a b^{3}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a b^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(b*x^2+a),x, algorithm="giac")

[Out]

1/2*sqrt(2)*(a*b^3)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a*b^3) + 1/2*sqrt
(2)*(a*b^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a*b^3) - 1/4*sqrt(2)*(a*
b^3)^(3/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b^3) + 1/4*sqrt(2)*(a*b^3)^(3/4)*log(-sqrt(2)*s
qrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b^3)

________________________________________________________________________________________

Mupad [B]
time = 0.07, size = 38, normalized size = 0.38 \begin {gather*} \frac {\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )-\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{{\left (-a\right )}^{1/4}\,b^{3/4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)/(a + b*x^2),x)

[Out]

(atan((b^(1/4)*x^(1/2))/(-a)^(1/4)) - atanh((b^(1/4)*x^(1/2))/(-a)^(1/4)))/((-a)^(1/4)*b^(3/4))

________________________________________________________________________________________