3.1.84 \(\int \frac {c+d x^2}{(a+b x^2)^{3/2}} \, dx\) [84]

Optimal. Leaf size=54 \[ \frac {(b c-a d) x}{a b \sqrt {a+b x^2}}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{b^{3/2}} \]

[Out]

d*arctanh(x*b^(1/2)/(b*x^2+a)^(1/2))/b^(3/2)+(-a*d+b*c)*x/a/b/(b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {393, 223, 212} \begin {gather*} \frac {d \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{b^{3/2}}+\frac {x (b c-a d)}{a b \sqrt {a+b x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2)/(a + b*x^2)^(3/2),x]

[Out]

((b*c - a*d)*x)/(a*b*Sqrt[a + b*x^2]) + (d*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/b^(3/2)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 393

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d))*x*((a + b*x^n)^(p
 + 1)/(a*b*n*(p + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x]
 /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rubi steps

\begin {align*} \int \frac {c+d x^2}{\left (a+b x^2\right )^{3/2}} \, dx &=\frac {(b c-a d) x}{a b \sqrt {a+b x^2}}+\frac {d \int \frac {1}{\sqrt {a+b x^2}} \, dx}{b}\\ &=\frac {(b c-a d) x}{a b \sqrt {a+b x^2}}+\frac {d \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right )}{b}\\ &=\frac {(b c-a d) x}{a b \sqrt {a+b x^2}}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.08, size = 58, normalized size = 1.07 \begin {gather*} \frac {b c x-a d x}{a b \sqrt {a+b x^2}}-\frac {d \log \left (-\sqrt {b} x+\sqrt {a+b x^2}\right )}{b^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2)/(a + b*x^2)^(3/2),x]

[Out]

(b*c*x - a*d*x)/(a*b*Sqrt[a + b*x^2]) - (d*Log[-(Sqrt[b]*x) + Sqrt[a + b*x^2]])/b^(3/2)

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 55, normalized size = 1.02

method result size
default \(d \left (-\frac {x}{b \sqrt {b \,x^{2}+a}}+\frac {\ln \left (x \sqrt {b}+\sqrt {b \,x^{2}+a}\right )}{b^{\frac {3}{2}}}\right )+\frac {c x}{a \sqrt {b \,x^{2}+a}}\) \(55\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)/(b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

d*(-x/b/(b*x^2+a)^(1/2)+1/b^(3/2)*ln(x*b^(1/2)+(b*x^2+a)^(1/2)))+c*x/a/(b*x^2+a)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.33, size = 46, normalized size = 0.85 \begin {gather*} \frac {c x}{\sqrt {b x^{2} + a} a} - \frac {d x}{\sqrt {b x^{2} + a} b} + \frac {d \operatorname {arsinh}\left (\frac {b x}{\sqrt {a b}}\right )}{b^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

c*x/(sqrt(b*x^2 + a)*a) - d*x/(sqrt(b*x^2 + a)*b) + d*arcsinh(b*x/sqrt(a*b))/b^(3/2)

________________________________________________________________________________________

Fricas [A]
time = 0.51, size = 167, normalized size = 3.09 \begin {gather*} \left [\frac {2 \, {\left (b^{2} c - a b d\right )} \sqrt {b x^{2} + a} x + {\left (a b d x^{2} + a^{2} d\right )} \sqrt {b} \log \left (-2 \, b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {b} x - a\right )}{2 \, {\left (a b^{3} x^{2} + a^{2} b^{2}\right )}}, \frac {{\left (b^{2} c - a b d\right )} \sqrt {b x^{2} + a} x - {\left (a b d x^{2} + a^{2} d\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {-b} x}{\sqrt {b x^{2} + a}}\right )}{a b^{3} x^{2} + a^{2} b^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

[1/2*(2*(b^2*c - a*b*d)*sqrt(b*x^2 + a)*x + (a*b*d*x^2 + a^2*d)*sqrt(b)*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(
b)*x - a))/(a*b^3*x^2 + a^2*b^2), ((b^2*c - a*b*d)*sqrt(b*x^2 + a)*x - (a*b*d*x^2 + a^2*d)*sqrt(-b)*arctan(sqr
t(-b)*x/sqrt(b*x^2 + a)))/(a*b^3*x^2 + a^2*b^2)]

________________________________________________________________________________________

Sympy [A]
time = 2.36, size = 60, normalized size = 1.11 \begin {gather*} d \left (\frac {\operatorname {asinh}{\left (\frac {\sqrt {b} x}{\sqrt {a}} \right )}}{b^{\frac {3}{2}}} - \frac {x}{\sqrt {a} b \sqrt {1 + \frac {b x^{2}}{a}}}\right ) + \frac {c x}{a^{\frac {3}{2}} \sqrt {1 + \frac {b x^{2}}{a}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)/(b*x**2+a)**(3/2),x)

[Out]

d*(asinh(sqrt(b)*x/sqrt(a))/b**(3/2) - x/(sqrt(a)*b*sqrt(1 + b*x**2/a))) + c*x/(a**(3/2)*sqrt(1 + b*x**2/a))

________________________________________________________________________________________

Giac [A]
time = 0.83, size = 50, normalized size = 0.93 \begin {gather*} -\frac {d \log \left ({\left | -\sqrt {b} x + \sqrt {b x^{2} + a} \right |}\right )}{b^{\frac {3}{2}}} + \frac {{\left (b c - a d\right )} x}{\sqrt {b x^{2} + a} a b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

-d*log(abs(-sqrt(b)*x + sqrt(b*x^2 + a)))/b^(3/2) + (b*c - a*d)*x/(sqrt(b*x^2 + a)*a*b)

________________________________________________________________________________________

Mupad [B]
time = 5.12, size = 53, normalized size = 0.98 \begin {gather*} \frac {d\,\ln \left (\sqrt {b}\,x+\sqrt {b\,x^2+a}\right )}{b^{3/2}}+\frac {c\,x}{a\,\sqrt {b\,x^2+a}}-\frac {d\,x}{b\,\sqrt {b\,x^2+a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^2)/(a + b*x^2)^(3/2),x)

[Out]

(d*log(b^(1/2)*x + (a + b*x^2)^(1/2)))/b^(3/2) + (c*x)/(a*(a + b*x^2)^(1/2)) - (d*x)/(b*(a + b*x^2)^(1/2))

________________________________________________________________________________________