3.2.70 \(\int \frac {\sqrt {c+d x^2}}{(a+b x^2)^{5/2}} \, dx\) [170]

Optimal. Leaf size=237 \[ \frac {x \sqrt {c+d x^2}}{3 a \left (a+b x^2\right )^{3/2}}+\frac {(2 b c-a d) \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{3 a^{3/2} \sqrt {b} (b c-a d) \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}-\frac {c^{3/2} \sqrt {d} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 (b c-a d) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

-1/3*c^(3/2)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)
^(1/2))*d^(1/2)*(b*x^2+a)^(1/2)/a^2/(-a*d+b*c)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)+1/3*x*(d*x^2+c)
^(1/2)/a/(b*x^2+a)^(3/2)+1/3*(-a*d+2*b*c)*(1/(1+b*x^2/a))^(1/2)*(1+b*x^2/a)^(1/2)*EllipticE(x*b^(1/2)/a^(1/2)/
(1+b*x^2/a)^(1/2),(1-a*d/b/c)^(1/2))*(d*x^2+c)^(1/2)/a^(3/2)/(-a*d+b*c)/b^(1/2)/(b*x^2+a)^(1/2)/(a*(d*x^2+c)/c
/(b*x^2+a))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 237, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {423, 539, 429, 422} \begin {gather*} \frac {\sqrt {c+d x^2} (2 b c-a d) E\left (\text {ArcTan}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{3 a^{3/2} \sqrt {b} \sqrt {a+b x^2} (b c-a d) \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}-\frac {c^{3/2} \sqrt {d} \sqrt {a+b x^2} F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c+d x^2} (b c-a d) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {x \sqrt {c+d x^2}}{3 a \left (a+b x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x^2]/(a + b*x^2)^(5/2),x]

[Out]

(x*Sqrt[c + d*x^2])/(3*a*(a + b*x^2)^(3/2)) + ((2*b*c - a*d)*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[b]*x)/Sqrt
[a]], 1 - (a*d)/(b*c)])/(3*a^(3/2)*Sqrt[b]*(b*c - a*d)*Sqrt[a + b*x^2]*Sqrt[(a*(c + d*x^2))/(c*(a + b*x^2))])
- (c^(3/2)*Sqrt[d]*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*a^2*(b*c - a*d)
*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 423

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-x)*(a + b*x^n)^(p + 1)*((
c + d*x^n)^q/(a*n*(p + 1))), x] + Dist[1/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(n*
(p + 1) + 1) + d*(n*(p + q + 1) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[
p, -1] && LtQ[0, q, 1] && IntBinomialQ[a, b, c, d, n, p, q, x]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 539

Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Dist[(b*e - a*
f)/(b*c - a*d), Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[Sqrt[a + b
*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin {align*} \int \frac {\sqrt {c+d x^2}}{\left (a+b x^2\right )^{5/2}} \, dx &=\frac {x \sqrt {c+d x^2}}{3 a \left (a+b x^2\right )^{3/2}}-\frac {\int \frac {-2 c-d x^2}{\left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \, dx}{3 a}\\ &=\frac {x \sqrt {c+d x^2}}{3 a \left (a+b x^2\right )^{3/2}}-\frac {(c d) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a (b c-a d)}+\frac {(2 b c-a d) \int \frac {\sqrt {c+d x^2}}{\left (a+b x^2\right )^{3/2}} \, dx}{3 a (b c-a d)}\\ &=\frac {x \sqrt {c+d x^2}}{3 a \left (a+b x^2\right )^{3/2}}+\frac {(2 b c-a d) \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{3 a^{3/2} \sqrt {b} (b c-a d) \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}-\frac {c^{3/2} \sqrt {d} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 (b c-a d) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 2.91, size = 243, normalized size = 1.03 \begin {gather*} \frac {\sqrt {\frac {b}{a}} x \left (c+d x^2\right ) \left (2 a^2 d-2 b^2 c x^2+a b \left (-3 c+d x^2\right )\right )+i c (-2 b c+a d) \left (a+b x^2\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-2 i c (-b c+a d) \left (a+b x^2\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{3 a^2 \sqrt {\frac {b}{a}} (-b c+a d) \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x^2]/(a + b*x^2)^(5/2),x]

[Out]

(Sqrt[b/a]*x*(c + d*x^2)*(2*a^2*d - 2*b^2*c*x^2 + a*b*(-3*c + d*x^2)) + I*c*(-2*b*c + a*d)*(a + b*x^2)*Sqrt[1
+ (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - (2*I)*c*(-(b*c) + a*d)*(a +
b*x^2)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(3*a^2*Sqrt[b/a
]*(-(b*c) + a*d)*(a + b*x^2)^(3/2)*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(616\) vs. \(2(277)=554\).
time = 0.09, size = 617, normalized size = 2.60

method result size
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (\frac {x \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}{3 b^{2} a \left (x^{2}+\frac {a}{b}\right )^{2}}+\frac {\left (b d \,x^{2}+b c \right ) x \left (a d -2 b c \right )}{3 b \,a^{2} \left (a d -b c \right ) \sqrt {\left (x^{2}+\frac {a}{b}\right ) \left (b d \,x^{2}+b c \right )}}+\frac {\left (\frac {d}{3 a b}-\frac {a d -2 b c}{3 b \,a^{2}}-\frac {c \left (a d -2 b c \right )}{3 a^{2} \left (a d -b c \right )}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}+\frac {\left (a d -2 b c \right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{3 a^{2} \left (a d -b c \right ) \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(418\)
default \(\frac {\sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{5}-2 \sqrt {-\frac {b}{a}}\, b^{2} c d \,x^{5}+2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b c d \,x^{2}-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2} x^{2}-\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b c d \,x^{2}+2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2} x^{2}+2 \sqrt {-\frac {b}{a}}\, a^{2} d^{2} x^{3}-2 \sqrt {-\frac {b}{a}}\, a b c d \,x^{3}-2 \sqrt {-\frac {b}{a}}\, b^{2} c^{2} x^{3}+2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} c d -2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b \,c^{2}-\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} c d +2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b \,c^{2}+2 \sqrt {-\frac {b}{a}}\, a^{2} c d x -3 \sqrt {-\frac {b}{a}}\, a b \,c^{2} x}{3 \sqrt {d \,x^{2}+c}\, \sqrt {-\frac {b}{a}}\, \left (a d -b c \right ) a^{2} \left (b \,x^{2}+a \right )^{\frac {3}{2}}}\) \(617\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)^(1/2)/(b*x^2+a)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/3*((-b/a)^(1/2)*a*b*d^2*x^5-2*(-b/a)^(1/2)*b^2*c*d*x^5+2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x
*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b*c*d*x^2-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),
(a*d/b/c)^(1/2))*b^2*c^2*x^2-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))
*a*b*c*d*x^2+2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^2*c^2*x^2+2
*(-b/a)^(1/2)*a^2*d^2*x^3-2*(-b/a)^(1/2)*a*b*c*d*x^3-2*(-b/a)^(1/2)*b^2*c^2*x^3+2*((b*x^2+a)/a)^(1/2)*((d*x^2+
c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^2*c*d-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*Ellipt
icF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b*c^2-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(
a*d/b/c)^(1/2))*a^2*c*d+2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*
b*c^2+2*(-b/a)^(1/2)*a^2*c*d*x-3*(-b/a)^(1/2)*a*b*c^2*x)/(d*x^2+c)^(1/2)/(-b/a)^(1/2)/(a*d-b*c)/a^2/(b*x^2+a)^
(3/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^(5/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)/(b*x^2 + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^(5/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c + d x^{2}}}{\left (a + b x^{2}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)**(1/2)/(b*x**2+a)**(5/2),x)

[Out]

Integral(sqrt(c + d*x**2)/(a + b*x**2)**(5/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^(5/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*x^2 + c)/(b*x^2 + a)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {d\,x^2+c}}{{\left (b\,x^2+a\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^2)^(1/2)/(a + b*x^2)^(5/2),x)

[Out]

int((c + d*x^2)^(1/2)/(a + b*x^2)^(5/2), x)

________________________________________________________________________________________