3.3.38 \(\int \frac {(a+b x+c x^2+d x^3)^p (b (1+p) x+c (2+2 p) x^2+d (3+3 p) x^3)}{x} \, dx\) [238]

Optimal. Leaf size=19 \[ \left (a+b x+c x^2+d x^3\right )^{1+p} \]

[Out]

(d*x^3+c*x^2+b*x+a)^(1+p)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {1599, 1602} \begin {gather*} \left (a+b x+c x^2+d x^3\right )^{p+1} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*x + c*x^2 + d*x^3)^p*(b*(1 + p)*x + c*(2 + 2*p)*x^2 + d*(3 + 3*p)*x^3))/x,x]

[Out]

(a + b*x + c*x^2 + d*x^3)^(1 + p)

Rule 1599

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(m +
 n*p)*(a + b*x^(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, m, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] &
& PosQ[r - p]

Rule 1602

Int[(Pp_)*(Qq_)^(m_.), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[Coeff[Pp, x, p]*x^(p - q +
 1)*(Qq^(m + 1)/((p + m*q + 1)*Coeff[Qq, x, q])), x] /; NeQ[p + m*q + 1, 0] && EqQ[(p + m*q + 1)*Coeff[Qq, x,
q]*Pp, Coeff[Pp, x, p]*x^(p - q)*((p - q + 1)*Qq + (m + 1)*x*D[Qq, x])]] /; FreeQ[m, x] && PolyQ[Pp, x] && Pol
yQ[Qq, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\left (a+b x+c x^2+d x^3\right )^p \left (b (1+p) x+c (2+2 p) x^2+d (3+3 p) x^3\right )}{x} \, dx &=\int \left (b (1+p)+c (2+2 p) x+d (3+3 p) x^2\right ) \left (a+b x+c x^2+d x^3\right )^p \, dx\\ &=\left (a+b x+c x^2+d x^3\right )^{1+p}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.08, size = 17, normalized size = 0.89 \begin {gather*} (a+x (b+x (c+d x)))^{1+p} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x + c*x^2 + d*x^3)^p*(b*(1 + p)*x + c*(2 + 2*p)*x^2 + d*(3 + 3*p)*x^3))/x,x]

[Out]

(a + x*(b + x*(c + d*x)))^(1 + p)

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 20, normalized size = 1.05

method result size
gosper \(\left (d \,x^{3}+c \,x^{2}+b x +a \right )^{1+p}\) \(20\)
risch \(\left (d \,x^{3}+c \,x^{2}+b x +a \right )^{p} \left (d \,x^{3}+c \,x^{2}+b x +a \right )\) \(34\)
norman \(a \,{\mathrm e}^{p \ln \left (d \,x^{3}+c \,x^{2}+b x +a \right )}+b x \,{\mathrm e}^{p \ln \left (d \,x^{3}+c \,x^{2}+b x +a \right )}+c \,x^{2} {\mathrm e}^{p \ln \left (d \,x^{3}+c \,x^{2}+b x +a \right )}+d \,x^{3} {\mathrm e}^{p \ln \left (d \,x^{3}+c \,x^{2}+b x +a \right )}\) \(93\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^3+c*x^2+b*x+a)^p*(b*(1+p)*x+c*(2+2*p)*x^2+d*(3+3*p)*x^3)/x,x,method=_RETURNVERBOSE)

[Out]

(d*x^3+c*x^2+b*x+a)^(1+p)

________________________________________________________________________________________

Maxima [A]
time = 0.32, size = 33, normalized size = 1.74 \begin {gather*} {\left (d x^{3} + c x^{2} + b x + a\right )} {\left (d x^{3} + c x^{2} + b x + a\right )}^{p} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c*x^2+b*x+a)^p*(b*(1+p)*x+c*(2+2*p)*x^2+d*(3+3*p)*x^3)/x,x, algorithm="maxima")

[Out]

(d*x^3 + c*x^2 + b*x + a)*(d*x^3 + c*x^2 + b*x + a)^p

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 33, normalized size = 1.74 \begin {gather*} {\left (d x^{3} + c x^{2} + b x + a\right )} {\left (d x^{3} + c x^{2} + b x + a\right )}^{p} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c*x^2+b*x+a)^p*(b*(1+p)*x+c*(2+2*p)*x^2+d*(3+3*p)*x^3)/x,x, algorithm="fricas")

[Out]

(d*x^3 + c*x^2 + b*x + a)*(d*x^3 + c*x^2 + b*x + a)^p

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**3+c*x**2+b*x+a)**p*(b*(1+p)*x+c*(2+2*p)*x**2+d*(3+3*p)*x**3)/x,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 52 vs. \(2 (19) = 38\).
time = 5.56, size = 52, normalized size = 2.74 \begin {gather*} \frac {{\left (d x^{3} + c x^{2} + b x + a\right )}^{p + 1} p}{p + 1} + \frac {{\left (d x^{3} + c x^{2} + b x + a\right )}^{p + 1}}{p + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c*x^2+b*x+a)^p*(b*(1+p)*x+c*(2+2*p)*x^2+d*(3+3*p)*x^3)/x,x, algorithm="giac")

[Out]

(d*x^3 + c*x^2 + b*x + a)^(p + 1)*p/(p + 1) + (d*x^3 + c*x^2 + b*x + a)^(p + 1)/(p + 1)

________________________________________________________________________________________

Mupad [B]
time = 2.19, size = 19, normalized size = 1.00 \begin {gather*} {\left (d\,x^3+c\,x^2+b\,x+a\right )}^{p+1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*x*(p + 1) + c*x^2*(2*p + 2) + d*x^3*(3*p + 3))*(a + b*x + c*x^2 + d*x^3)^p)/x,x)

[Out]

(a + b*x + c*x^2 + d*x^3)^(p + 1)

________________________________________________________________________________________