3.5.15 \(\int \frac {-1+x}{1-x+x^2} \, dx\) [415]

Optimal. Leaf size=32 \[ \frac {\tan ^{-1}\left (\frac {1-2 x}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {1}{2} \log \left (1-x+x^2\right ) \]

[Out]

1/2*ln(x^2-x+1)+1/3*arctan(1/3*(1-2*x)*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {648, 632, 210, 642} \begin {gather*} \frac {\text {ArcTan}\left (\frac {1-2 x}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {1}{2} \log \left (x^2-x+1\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-1 + x)/(1 - x + x^2),x]

[Out]

ArcTan[(1 - 2*x)/Sqrt[3]]/Sqrt[3] + Log[1 - x + x^2]/2

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {-1+x}{1-x+x^2} \, dx &=-\left (\frac {1}{2} \int \frac {1}{1-x+x^2} \, dx\right )+\frac {1}{2} \int \frac {-1+2 x}{1-x+x^2} \, dx\\ &=\frac {1}{2} \log \left (1-x+x^2\right )+\text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 x\right )\\ &=-\frac {\tan ^{-1}\left (\frac {-1+2 x}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {1}{2} \log \left (1-x+x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 33, normalized size = 1.03 \begin {gather*} -\frac {\tan ^{-1}\left (\frac {-1+2 x}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {1}{2} \log \left (1-x+x^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-1 + x)/(1 - x + x^2),x]

[Out]

-(ArcTan[(-1 + 2*x)/Sqrt[3]]/Sqrt[3]) + Log[1 - x + x^2]/2

________________________________________________________________________________________

Maple [A]
time = 0.29, size = 29, normalized size = 0.91

method result size
default \(\frac {\ln \left (x^{2}-x +1\right )}{2}-\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{3}\) \(29\)
risch \(\frac {\ln \left (4 x^{2}-4 x +4\right )}{2}-\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{3}\) \(31\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-1+x)/(x^2-x+1),x,method=_RETURNVERBOSE)

[Out]

1/2*ln(x^2-x+1)-1/3*3^(1/2)*arctan(1/3*(2*x-1)*3^(1/2))

________________________________________________________________________________________

Maxima [A]
time = 0.48, size = 28, normalized size = 0.88 \begin {gather*} -\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + \frac {1}{2} \, \log \left (x^{2} - x + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x)/(x^2-x+1),x, algorithm="maxima")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/2*log(x^2 - x + 1)

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 28, normalized size = 0.88 \begin {gather*} -\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + \frac {1}{2} \, \log \left (x^{2} - x + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x)/(x^2-x+1),x, algorithm="fricas")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/2*log(x^2 - x + 1)

________________________________________________________________________________________

Sympy [A]
time = 0.04, size = 34, normalized size = 1.06 \begin {gather*} \frac {\log {\left (x^{2} - x + 1 \right )}}{2} - \frac {\sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} x}{3} - \frac {\sqrt {3}}{3} \right )}}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x)/(x**2-x+1),x)

[Out]

log(x**2 - x + 1)/2 - sqrt(3)*atan(2*sqrt(3)*x/3 - sqrt(3)/3)/3

________________________________________________________________________________________

Giac [A]
time = 4.16, size = 28, normalized size = 0.88 \begin {gather*} -\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + \frac {1}{2} \, \log \left (x^{2} - x + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x)/(x^2-x+1),x, algorithm="giac")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/2*log(x^2 - x + 1)

________________________________________________________________________________________

Mupad [B]
time = 0.04, size = 30, normalized size = 0.94 \begin {gather*} \frac {\ln \left (x^2-x+1\right )}{2}-\frac {\sqrt {3}\,\mathrm {atan}\left (\frac {2\,\sqrt {3}\,x}{3}-\frac {\sqrt {3}}{3}\right )}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x - 1)/(x^2 - x + 1),x)

[Out]

log(x^2 - x + 1)/2 - (3^(1/2)*atan((2*3^(1/2)*x)/3 - 3^(1/2)/3))/3

________________________________________________________________________________________