3.5.26 \(\int \frac {\frac {1}{x^3}+x^3}{-\frac {1}{x^3}+x^3} \, dx\) [426]

Optimal. Leaf size=69 \[ x+\frac {\tan ^{-1}\left (\frac {1-2 x}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {\tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {2}{3} \tanh ^{-1}(x)+\frac {1}{6} \log \left (1-x+x^2\right )-\frac {1}{6} \log \left (1+x+x^2\right ) \]

[Out]

x-2/3*arctanh(x)+1/6*ln(x^2-x+1)-1/6*ln(x^2+x+1)+1/3*arctan(1/3*(1-2*x)*3^(1/2))*3^(1/2)-1/3*arctan(1/3*(1+2*x
)*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.474, Rules used = {1607, 1598, 396, 216, 648, 632, 210, 642, 212} \begin {gather*} \frac {\text {ArcTan}\left (\frac {1-2 x}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {\text {ArcTan}\left (\frac {2 x+1}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {1}{6} \log \left (x^2-x+1\right )-\frac {1}{6} \log \left (x^2+x+1\right )+x-\frac {2}{3} \tanh ^{-1}(x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^(-3) + x^3)/(-x^(-3) + x^3),x]

[Out]

x + ArcTan[(1 - 2*x)/Sqrt[3]]/Sqrt[3] - ArcTan[(1 + 2*x)/Sqrt[3]]/Sqrt[3] - (2*ArcTanh[x])/3 + Log[1 - x + x^2
]/6 - Log[1 + x + x^2]/6

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 216

Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[-a/b, n]], s = Denominator[Rt[-a/b, n
]], k, u}, Simp[u = Int[(r - s*Cos[(2*k*Pi)/n]*x)/(r^2 - 2*r*s*Cos[(2*k*Pi)/n]*x + s^2*x^2), x] + Int[(r + s*C
os[(2*k*Pi)/n]*x)/(r^2 + 2*r*s*Cos[(2*k*Pi)/n]*x + s^2*x^2), x]; 2*(r^2/(a*n))*Int[1/(r^2 - s^2*x^2), x] + Dis
t[2*(r/(a*n)), Sum[u, {k, 1, (n - 2)/4}], x], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && NegQ[a/b]

Rule 396

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1598

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 1607

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rubi steps

\begin {align*} \int \frac {\frac {1}{x^3}+x^3}{-\frac {1}{x^3}+x^3} \, dx &=\int \frac {x^3 \left (\frac {1}{x^3}+x^3\right )}{-1+x^6} \, dx\\ &=\int \frac {1+x^6}{-1+x^6} \, dx\\ &=x+2 \int \frac {1}{-1+x^6} \, dx\\ &=x-\frac {2}{3} \int \frac {1}{1-x^2} \, dx-\frac {2}{3} \int \frac {1-\frac {x}{2}}{1-x+x^2} \, dx-\frac {2}{3} \int \frac {1+\frac {x}{2}}{1+x+x^2} \, dx\\ &=x-\frac {2}{3} \tanh ^{-1}(x)+\frac {1}{6} \int \frac {-1+2 x}{1-x+x^2} \, dx-\frac {1}{6} \int \frac {1+2 x}{1+x+x^2} \, dx-\frac {1}{2} \int \frac {1}{1-x+x^2} \, dx-\frac {1}{2} \int \frac {1}{1+x+x^2} \, dx\\ &=x-\frac {2}{3} \tanh ^{-1}(x)+\frac {1}{6} \log \left (1-x+x^2\right )-\frac {1}{6} \log \left (1+x+x^2\right )+\text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 x\right )+\text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )\\ &=x-\frac {\tan ^{-1}\left (\frac {-1+2 x}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {\tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {2}{3} \tanh ^{-1}(x)+\frac {1}{6} \log \left (1-x+x^2\right )-\frac {1}{6} \log \left (1+x+x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.00, size = 78, normalized size = 1.13 \begin {gather*} \frac {1}{6} \left (6 x-2 \sqrt {3} \tan ^{-1}\left (\frac {-1+2 x}{\sqrt {3}}\right )-2 \sqrt {3} \tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )+2 \log (1-x)-2 \log (1+x)+\log \left (1-x+x^2\right )-\log \left (1+x+x^2\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^(-3) + x^3)/(-x^(-3) + x^3),x]

[Out]

(6*x - 2*Sqrt[3]*ArcTan[(-1 + 2*x)/Sqrt[3]] - 2*Sqrt[3]*ArcTan[(1 + 2*x)/Sqrt[3]] + 2*Log[1 - x] - 2*Log[1 + x
] + Log[1 - x + x^2] - Log[1 + x + x^2])/6

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 67, normalized size = 0.97

method result size
risch \(x -\frac {\ln \left (1+x \right )}{3}+\frac {\ln \left (x^{2}-x +1\right )}{6}-\frac {\sqrt {3}\, \arctan \left (\frac {2 \left (x -\frac {1}{2}\right ) \sqrt {3}}{3}\right )}{3}-\frac {\ln \left (x^{2}+x +1\right )}{6}-\frac {\sqrt {3}\, \arctan \left (\frac {2 \left (x +\frac {1}{2}\right ) \sqrt {3}}{3}\right )}{3}+\frac {\ln \left (-1+x \right )}{3}\) \(63\)
default \(x -\frac {\ln \left (x^{2}+x +1\right )}{6}-\frac {\arctan \left (\frac {\left (2 x +1\right ) \sqrt {3}}{3}\right ) \sqrt {3}}{3}+\frac {\ln \left (-1+x \right )}{3}-\frac {\ln \left (1+x \right )}{3}+\frac {\ln \left (x^{2}-x +1\right )}{6}-\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{3}\) \(67\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/x^3+x^3)/(-1/x^3+x^3),x,method=_RETURNVERBOSE)

[Out]

x-1/6*ln(x^2+x+1)-1/3*arctan(1/3*(2*x+1)*3^(1/2))*3^(1/2)+1/3*ln(-1+x)-1/3*ln(1+x)+1/6*ln(x^2-x+1)-1/3*3^(1/2)
*arctan(1/3*(2*x-1)*3^(1/2))

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 66, normalized size = 0.96 \begin {gather*} -\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + x - \frac {1}{6} \, \log \left (x^{2} + x + 1\right ) + \frac {1}{6} \, \log \left (x^{2} - x + 1\right ) - \frac {1}{3} \, \log \left (x + 1\right ) + \frac {1}{3} \, \log \left (x - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/x^3+x^3)/(-1/x^3+x^3),x, algorithm="maxima")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + x - 1/6*log(x^2 + x +
 1) + 1/6*log(x^2 - x + 1) - 1/3*log(x + 1) + 1/3*log(x - 1)

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 66, normalized size = 0.96 \begin {gather*} -\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + x - \frac {1}{6} \, \log \left (x^{2} + x + 1\right ) + \frac {1}{6} \, \log \left (x^{2} - x + 1\right ) - \frac {1}{3} \, \log \left (x + 1\right ) + \frac {1}{3} \, \log \left (x - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/x^3+x^3)/(-1/x^3+x^3),x, algorithm="fricas")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + x - 1/6*log(x^2 + x +
 1) + 1/6*log(x^2 - x + 1) - 1/3*log(x + 1) + 1/3*log(x - 1)

________________________________________________________________________________________

Sympy [A]
time = 0.16, size = 85, normalized size = 1.23 \begin {gather*} x + \frac {\log {\left (x - 1 \right )}}{3} - \frac {\log {\left (x + 1 \right )}}{3} + \frac {\log {\left (x^{2} - x + 1 \right )}}{6} - \frac {\log {\left (x^{2} + x + 1 \right )}}{6} - \frac {\sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} x}{3} - \frac {\sqrt {3}}{3} \right )}}{3} - \frac {\sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} x}{3} + \frac {\sqrt {3}}{3} \right )}}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/x**3+x**3)/(-1/x**3+x**3),x)

[Out]

x + log(x - 1)/3 - log(x + 1)/3 + log(x**2 - x + 1)/6 - log(x**2 + x + 1)/6 - sqrt(3)*atan(2*sqrt(3)*x/3 - sqr
t(3)/3)/3 - sqrt(3)*atan(2*sqrt(3)*x/3 + sqrt(3)/3)/3

________________________________________________________________________________________

Giac [A]
time = 4.42, size = 68, normalized size = 0.99 \begin {gather*} -\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + x - \frac {1}{6} \, \log \left (x^{2} + x + 1\right ) + \frac {1}{6} \, \log \left (x^{2} - x + 1\right ) - \frac {1}{3} \, \log \left ({\left | x + 1 \right |}\right ) + \frac {1}{3} \, \log \left ({\left | x - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/x^3+x^3)/(-1/x^3+x^3),x, algorithm="giac")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + x - 1/6*log(x^2 + x +
 1) + 1/6*log(x^2 - x + 1) - 1/3*log(abs(x + 1)) + 1/3*log(abs(x - 1))

________________________________________________________________________________________

Mupad [B]
time = 0.04, size = 94, normalized size = 1.36 \begin {gather*} x+\frac {\mathrm {atan}\left (x\,1{}\mathrm {i}\right )\,2{}\mathrm {i}}{3}-\mathrm {atan}\left (\frac {x\,32{}\mathrm {i}}{-32+\sqrt {3}\,32{}\mathrm {i}}-\frac {32\,\sqrt {3}\,x}{-32+\sqrt {3}\,32{}\mathrm {i}}\right )\,\left (\frac {\sqrt {3}}{3}-\frac {1}{3}{}\mathrm {i}\right )-\mathrm {atan}\left (\frac {x\,32{}\mathrm {i}}{32+\sqrt {3}\,32{}\mathrm {i}}+\frac {32\,\sqrt {3}\,x}{32+\sqrt {3}\,32{}\mathrm {i}}\right )\,\left (\frac {\sqrt {3}}{3}+\frac {1}{3}{}\mathrm {i}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(1/x^3 + x^3)/(1/x^3 - x^3),x)

[Out]

x + (atan(x*1i)*2i)/3 - atan((x*32i)/(3^(1/2)*32i - 32) - (32*3^(1/2)*x)/(3^(1/2)*32i - 32))*(3^(1/2)/3 - 1i/3
) - atan((x*32i)/(3^(1/2)*32i + 32) + (32*3^(1/2)*x)/(3^(1/2)*32i + 32))*(3^(1/2)/3 + 1i/3)

________________________________________________________________________________________