3.1.83 \(\int \frac {e+f x}{(2-x) \sqrt {1+x^3}} \, dx\) [83]

Optimal. Leaf size=139 \[ \frac {2}{9} (e+2 f) \tanh ^{-1}\left (\frac {(1+x)^2}{3 \sqrt {1+x^3}}\right )+\frac {2 \sqrt {2+\sqrt {3}} (e-f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \]

[Out]

2/9*(e+2*f)*arctanh(1/3*(1+x)^2/(x^3+1)^(1/2))+2/9*(e-f)*(1+x)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)
+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2
)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2164, 224, 2163, 212} \begin {gather*} \frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} (e-f) F\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}+\frac {2}{9} (e+2 f) \tanh ^{-1}\left (\frac {(x+1)^2}{3 \sqrt {x^3+1}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e + f*x)/((2 - x)*Sqrt[1 + x^3]),x]

[Out]

(2*(e + 2*f)*ArcTanh[(1 + x)^2/(3*Sqrt[1 + x^3])])/9 + (2*Sqrt[2 + Sqrt[3]]*(e - f)*(1 + x)*Sqrt[(1 - x + x^2)
/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[
(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 2163

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[-2*(e/d), Subst[Int
[1/(9 - a*x^2), x], x, (1 + f*(x/e))^2/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
0] && EqQ[b*c^3 + 8*a*d^3, 0] && EqQ[2*d*e + c*f, 0]

Rule 2164

Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(2*d*e + c*f)/(3*c
*d), Int[1/Sqrt[a + b*x^3], x], x] + Dist[(d*e - c*f)/(3*c*d), Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x]
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && (EqQ[b*c^3 - 4*a*d^3, 0] || EqQ[b*c^3 + 8*a*d^3,
0]) && NeQ[2*d*e + c*f, 0]

Rubi steps

\begin {align*} \int \frac {e+f x}{(2-x) \sqrt {1+x^3}} \, dx &=\frac {1}{3} (e-f) \int \frac {1}{\sqrt {1+x^3}} \, dx+\frac {1}{6} (e+2 f) \int \frac {2+2 x}{(2-x) \sqrt {1+x^3}} \, dx\\ &=\frac {2 \sqrt {2+\sqrt {3}} (e-f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {1}{3} (2 (e+2 f)) \text {Subst}\left (\int \frac {1}{9-x^2} \, dx,x,\frac {(1+x)^2}{\sqrt {1+x^3}}\right )\\ &=\frac {2}{9} (e+2 f) \tanh ^{-1}\left (\frac {(1+x)^2}{3 \sqrt {1+x^3}}\right )+\frac {2 \sqrt {2+\sqrt {3}} (e-f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 20.21, size = 273, normalized size = 1.96 \begin {gather*} \frac {2 \sqrt {\frac {2}{3}} \sqrt {-\frac {i (1+x)}{-3 i+\sqrt {3}}} \left (-3 i f \sqrt {i+\sqrt {3}-2 i x} \left (-i-\sqrt {3}+\left (-i+\sqrt {3}\right ) x\right ) F\left (\sin ^{-1}\left (\frac {\sqrt {-i+\sqrt {3}+2 i x}}{\sqrt {2} \sqrt [4]{3}}\right )|\frac {2 \sqrt {3}}{-3 i+\sqrt {3}}\right )+2 \sqrt {3} (e+2 f) \sqrt {-i+\sqrt {3}+2 i x} \sqrt {1-x+x^2} \Pi \left (\frac {2 \sqrt {3}}{3 i+\sqrt {3}};\sin ^{-1}\left (\frac {\sqrt {-i+\sqrt {3}+2 i x}}{\sqrt {2} \sqrt [4]{3}}\right )|\frac {2 \sqrt {3}}{-3 i+\sqrt {3}}\right )\right )}{\left (3 i+\sqrt {3}\right ) \sqrt {-i+\sqrt {3}+2 i x} \sqrt {1+x^3}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(e + f*x)/((2 - x)*Sqrt[1 + x^3]),x]

[Out]

(2*Sqrt[2/3]*Sqrt[((-I)*(1 + x))/(-3*I + Sqrt[3])]*((-3*I)*f*Sqrt[I + Sqrt[3] - (2*I)*x]*(-I - Sqrt[3] + (-I +
 Sqrt[3])*x)*EllipticF[ArcSin[Sqrt[-I + Sqrt[3] + (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])] +
 2*Sqrt[3]*(e + 2*f)*Sqrt[-I + Sqrt[3] + (2*I)*x]*Sqrt[1 - x + x^2]*EllipticPi[(2*Sqrt[3])/(3*I + Sqrt[3]), Ar
cSin[Sqrt[-I + Sqrt[3] + (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])]))/((3*I + Sqrt[3])*Sqrt[-I
 + Sqrt[3] + (2*I)*x]*Sqrt[1 + x^3])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 245 vs. \(2 (114 ) = 228\).
time = 0.25, size = 246, normalized size = 1.77

method result size
default \(-\frac {2 f \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticF \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}+\frac {2 \left (e +2 f \right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticPi \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {1}{2}-\frac {i \sqrt {3}}{6}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {x^{3}+1}}\) \(246\)
elliptic \(-\frac {2 f \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticF \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}-\frac {2 \left (-e -2 f \right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticPi \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {1}{2}-\frac {i \sqrt {3}}{6}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {x^{3}+1}}\) \(248\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)/(2-x)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*f*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*
((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),(
(-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+2/3*(e+2*f)*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^
(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x
^3+1)^(1/2)*EllipticPi(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),1/2-1/6*I*3^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3
^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2-x)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((f*x + e)/(sqrt(x^3 + 1)*(x - 2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 63, normalized size = 0.45 \begin {gather*} \frac {1}{9} \, {\left (2 \, f + e\right )} \log \left (\frac {x^{3} + 12 \, x^{2} + 6 \, \sqrt {x^{3} + 1} {\left (x + 1\right )} - 6 \, x + 10}{x^{3} - 6 \, x^{2} + 12 \, x - 8}\right ) - \frac {2}{3} \, {\left (f - e\right )} {\rm weierstrassPInverse}\left (0, -4, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2-x)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

1/9*(2*f + e)*log((x^3 + 12*x^2 + 6*sqrt(x^3 + 1)*(x + 1) - 6*x + 10)/(x^3 - 6*x^2 + 12*x - 8)) - 2/3*(f - e)*
weierstrassPInverse(0, -4, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {e}{x \sqrt {x^{3} + 1} - 2 \sqrt {x^{3} + 1}}\, dx - \int \frac {f x}{x \sqrt {x^{3} + 1} - 2 \sqrt {x^{3} + 1}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2-x)/(x**3+1)**(1/2),x)

[Out]

-Integral(e/(x*sqrt(x**3 + 1) - 2*sqrt(x**3 + 1)), x) - Integral(f*x/(x*sqrt(x**3 + 1) - 2*sqrt(x**3 + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2-x)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(f*x + e)/(sqrt(x^3 + 1)*(x - 2)), x)

________________________________________________________________________________________

Mupad [B]
time = 2.71, size = 327, normalized size = 2.35 \begin {gather*} \frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\left (e+2\,f\right )\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6};\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{3\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {2\,f\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(e + f*x)/((x^3 + 1)^(1/2)*(x - 2)),x)

[Out]

(2*((3^(1/2)*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*(e + 2*f)*((x + 1)/((3^(1/
2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi((3^(1/2)*1i)/6 + 1
/2, asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(3*(x^3 - x
*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2)) -
 (2*f*((3^(1/2)*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/
2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i
)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2
)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2)

________________________________________________________________________________________