3.2.44 \(\int \frac {1+\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx\) [144]

Optimal. Leaf size=317 \[ -\frac {\left (c-\left (1+\sqrt {3}\right ) d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \tan ^{-1}\left (\frac {\sqrt {c^2+c d+d^2} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}}}{\sqrt {c-d} \sqrt {d} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}}\right )}{\sqrt {c-d} \sqrt {d} \sqrt {c^2+c d+d^2} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \Pi \left (\frac {\left (c-\left (1+\sqrt {3}\right ) d\right )^2}{\left (c-\left (1-\sqrt {3}\right ) d\right )^2};\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\left (c-\left (1-\sqrt {3}\right ) d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \]

[Out]

-(1+x)*arctan((c^2+c*d+d^2)^(1/2)*((1+x)/(1+x+3^(1/2))^2)^(1/2)/(c-d)^(1/2)/d^(1/2)/((x^2-x+1)/(1+x+3^(1/2))^2
)^(1/2))*(c-d*(1+3^(1/2)))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)/(c-d)^(1/2)/d^(1/2)/(c^2+c*d+d^2)^(1/2)/(x^3+1)^(
1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)-4*3^(1/4)*(1+x)*EllipticPi((-1-x+3^(1/2))/(1+x+3^(1/2)),(c-d*(1+3^(1/2)))^2
/(c-d*(1-3^(1/2)))^2,I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)/(c-d*(1-3^(1/2
)))/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.90, antiderivative size = 317, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2167, 2138, 551, 585, 95, 211} \begin {gather*} \frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \Pi \left (\frac {\left (c-\left (1+\sqrt {3}\right ) d\right )^2}{\left (c-\left (1-\sqrt {3}\right ) d\right )^2};\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1} \left (c-\left (1-\sqrt {3}\right ) d\right )}-\frac {(x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (c-\left (1+\sqrt {3}\right ) d\right ) \text {ArcTan}\left (\frac {\sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {c^2+c d+d^2}}{\sqrt {d} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {c-d}}\right )}{\sqrt {d} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1} \sqrt {c-d} \sqrt {c^2+c d+d^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 + Sqrt[3] + x)/((c + d*x)*Sqrt[1 + x^3]),x]

[Out]

-(((c - (1 + Sqrt[3])*d)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*ArcTan[(Sqrt[c^2 + c*d + d^2]*Sqrt[(1
 + x)/(1 + Sqrt[3] + x)^2])/(Sqrt[c - d]*Sqrt[d]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2])])/(Sqrt[c - d]*Sqrt[
d]*Sqrt[c^2 + c*d + d^2]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])) + (4*3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 +
 x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticPi[(c - (1 + Sqrt[3])*d)^2/(c - (1 - Sqrt[3])*d)^2, ArcSin
[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/((c - (1 - Sqrt[3])*d)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^
2]*Sqrt[1 + x^3])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 551

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1/(a*Sqr
t[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b*(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c,
d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-f/e, -d/c])

Rule 585

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n], x] /; FreeQ[{a, b, c, d, e,
f, m, n, p, q, r}, x] && EqQ[m - n + 1, 0]

Rule 2138

Int[1/(((a_) + (b_.)*(x_))*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[a, Int[1/((
a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2]), x], x] - Dist[b, Int[x/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[
e + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]

Rule 2167

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q = Simplify[(1 +
Sqrt[3])*(f/e)]}, Dist[4*3^(1/4)*Sqrt[2 - Sqrt[3]]*f*(1 + q*x)*(Sqrt[(1 - q*x + q^2*x^2)/(1 + Sqrt[3] + q*x)^2
]/(q*Sqrt[a + b*x^3]*Sqrt[(1 + q*x)/(1 + Sqrt[3] + q*x)^2])), Subst[Int[1/(((1 - Sqrt[3])*d - c*q + ((1 + Sqrt
[3])*d - c*q)*x)*Sqrt[1 - x^2]*Sqrt[7 - 4*Sqrt[3] + x^2]), x], x, (-1 + Sqrt[3] - q*x)/(1 + Sqrt[3] + q*x)], x
]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b*e^3 - 2*(5 + 3*Sqrt[3])*a*f^3, 0] && NeQ[b*c^
3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]

Rubi steps

\begin {align*} \int \frac {1+\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx &=\frac {\left (4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}\right ) \text {Subst}\left (\int \frac {1}{\left (-c+\left (1-\sqrt {3}\right ) d+\left (-c+\left (1+\sqrt {3}\right ) d\right ) x\right ) \sqrt {1-x^2} \sqrt {7-4 \sqrt {3}+x^2}} \, dx,x,\frac {-1+\sqrt {3}-x}{1+\sqrt {3}+x}\right )}{\sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ &=-\frac {\left (4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \left (-c+d+\sqrt {3} d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}\right ) \text {Subst}\left (\int \frac {x}{\sqrt {1-x^2} \sqrt {7-4 \sqrt {3}+x^2} \left (\left (-c+\left (1-\sqrt {3}\right ) d\right )^2-\left (-c+\left (1+\sqrt {3}\right ) d\right )^2 x^2\right )} \, dx,x,\frac {-1+\sqrt {3}-x}{1+\sqrt {3}+x}\right )}{\sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {\left (4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \left (-c+\left (1-\sqrt {3}\right ) d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {7-4 \sqrt {3}+x^2} \left (\left (-c+\left (1-\sqrt {3}\right ) d\right )^2-\left (-c+\left (1+\sqrt {3}\right ) d\right )^2 x^2\right )} \, dx,x,\frac {-1+\sqrt {3}-x}{1+\sqrt {3}+x}\right )}{\sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ &=-\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \Pi \left (\frac {\left (c-\left (1+\sqrt {3}\right ) d\right )^2}{\left (c-\left (1-\sqrt {3}\right ) d\right )^2};-\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\left (c-\left (1-\sqrt {3}\right ) d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}-\frac {\left (2 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \left (-c+d+\sqrt {3} d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {7-4 \sqrt {3}+x} \left (\left (-c+\left (1-\sqrt {3}\right ) d\right )^2-\left (-c+\left (1+\sqrt {3}\right ) d\right )^2 x\right )} \, dx,x,\frac {\left (-1+\sqrt {3}-x\right )^2}{\left (1+\sqrt {3}+x\right )^2}\right )}{\sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ &=-\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \Pi \left (\frac {\left (c-\left (1+\sqrt {3}\right ) d\right )^2}{\left (c-\left (1-\sqrt {3}\right ) d\right )^2};-\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\left (c-\left (1-\sqrt {3}\right ) d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}-\frac {\left (4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \left (-c+d+\sqrt {3} d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}\right ) \text {Subst}\left (\int \frac {1}{-\left (-c+\left (1-\sqrt {3}\right ) d\right )^2+\left (-c+\left (1+\sqrt {3}\right ) d\right )^2-\left (\left (-c+\left (1-\sqrt {3}\right ) d\right )^2+\left (7-4 \sqrt {3}\right ) \left (-c+\left (1+\sqrt {3}\right ) d\right )^2\right ) x^2} \, dx,x,\frac {\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}}}{\sqrt {-\frac {\left (-2+\sqrt {3}\right ) \left (1-x+x^2\right )}{\left (1+\sqrt {3}+x\right )^2}}}\right )}{\sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ &=-\frac {\left (c-d-\sqrt {3} d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \tan ^{-1}\left (\frac {\sqrt {c^2+c d+d^2} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}}}{\sqrt {c-d} \sqrt {d} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}}\right )}{\sqrt {c-d} \sqrt {d} \sqrt {c^2+c d+d^2} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}-\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \Pi \left (\frac {\left (c-\left (1+\sqrt {3}\right ) d\right )^2}{\left (c-\left (1-\sqrt {3}\right ) d\right )^2};-\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\left (c-\left (1-\sqrt {3}\right ) d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.40, size = 214, normalized size = 0.68 \begin {gather*} \frac {2 \sqrt {\frac {1+x}{1+\sqrt [3]{-1}}} \left (-\frac {\left (\sqrt [3]{-1}-x\right ) \sqrt {\frac {\sqrt [3]{-1}-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} F\left (\sin ^{-1}\left (\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}}+\frac {i \left (c-\left (1+\sqrt {3}\right ) d\right ) \sqrt {1-x+x^2} \Pi \left (\frac {i \sqrt {3} d}{c+\sqrt [3]{-1} d};\sin ^{-1}\left (\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{c+\sqrt [3]{-1} d}\right )}{d \sqrt {1+x^3}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(1 + Sqrt[3] + x)/((c + d*x)*Sqrt[1 + x^3]),x]

[Out]

(2*Sqrt[(1 + x)/(1 + (-1)^(1/3))]*(-((((-1)^(1/3) - x)*Sqrt[((-1)^(1/3) - (-1)^(2/3)*x)/(1 + (-1)^(1/3))]*Elli
pticF[ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))
]) + (I*(c - (1 + Sqrt[3])*d)*Sqrt[1 - x + x^2]*EllipticPi[(I*Sqrt[3]*d)/(c + (-1)^(1/3)*d), ArcSin[Sqrt[(1 +
(-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/(c + (-1)^(1/3)*d)))/(d*Sqrt[1 + x^3])

________________________________________________________________________________________

Maple [A]
time = 0.29, size = 275, normalized size = 0.87

method result size
default \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticF \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{d \sqrt {x^{3}+1}}+\frac {2 \left (d \sqrt {3}-c +d \right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticPi \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-1+\frac {c}{d}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{d^{2} \sqrt {x^{3}+1}\, \left (-1+\frac {c}{d}\right )}\) \(275\)
elliptic \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticF \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{d \sqrt {x^{3}+1}}+\frac {2 \left (d \sqrt {3}-c +d \right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticPi \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-1+\frac {c}{d}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{d^{2} \sqrt {x^{3}+1}\, \left (-1+\frac {c}{d}\right )}\) \(275\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x+3^(1/2))/(d*x+c)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/d*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*(
(x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((
-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+2*(d*3^(1/2)-c+d)/d^2*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3
^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))
^(1/2)/(x^3+1)^(1/2)/(-1+c/d)*EllipticPi(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),(-3/2+1/2*I*3^(1/2))/(-1+c/d),((-3/
2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x+3^(1/2))/(d*x+c)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x + sqrt(3) + 1)/(sqrt(x^3 + 1)*(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x+3^(1/2))/(d*x+c)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^3 + 1)*(x + sqrt(3) + 1)/(d*x^4 + c*x^3 + d*x + c), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x + 1 + \sqrt {3}}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (c + d x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x+3**(1/2))/(d*x+c)/(x**3+1)**(1/2),x)

[Out]

Integral((x + 1 + sqrt(3))/(sqrt((x + 1)*(x**2 - x + 1))*(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x+3^(1/2))/(d*x+c)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate((x + sqrt(3) + 1)/(sqrt(x^3 + 1)*(d*x + c)), x)

________________________________________________________________________________________

Mupad [F(-1)]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \text {Hanged} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + 3^(1/2) + 1)/((x^3 + 1)^(1/2)*(c + d*x)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________