3.2.57 \(\int \frac {1-\sqrt {3}-x}{x \sqrt {1-x^3}} \, dx\) [157]

Optimal. Leaf size=141 \[ -\frac {2}{3} \left (1-\sqrt {3}\right ) \tanh ^{-1}\left (\sqrt {1-x^3}\right )+\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}} \]

[Out]

-2/3*arctanh((-x^3+1)^(1/2))*(1-3^(1/2))+2/3*(1-x)*EllipticF((1-x-3^(1/2))/(1-x+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6
^(1/2)+1/2*2^(1/2))*((x^2+x+1)/(1-x+3^(1/2))^2)^(1/2)*3^(3/4)/(-x^3+1)^(1/2)/((1-x)/(1-x+3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 141, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {1846, 272, 65, 212, 224} \begin {gather*} \frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} F\left (\text {ArcSin}\left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {2}{3} \left (1-\sqrt {3}\right ) \tanh ^{-1}\left (\sqrt {1-x^3}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - Sqrt[3] - x)/(x*Sqrt[1 - x^3]),x]

[Out]

(-2*(1 - Sqrt[3])*ArcTanh[Sqrt[1 - x^3]])/3 + (2*Sqrt[2 + Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 + Sqrt[3] - x
)^2]*EllipticF[ArcSin[(1 - Sqrt[3] - x)/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 - x)/(1 + Sqrt[3
] - x)^2]*Sqrt[1 - x^3])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1846

Int[(Pq_)/((x_)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Dist[Coeff[Pq, x, 0], Int[1/(x*Sqrt[a + b*x^n]), x
], x] + Int[ExpandToSum[(Pq - Coeff[Pq, x, 0])/x, x]/Sqrt[a + b*x^n], x] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] &
& IGtQ[n, 0] && NeQ[Coeff[Pq, x, 0], 0]

Rubi steps

\begin {align*} \int \frac {1-\sqrt {3}-x}{x \sqrt {1-x^3}} \, dx &=\left (1-\sqrt {3}\right ) \int \frac {1}{x \sqrt {1-x^3}} \, dx-\int \frac {1}{\sqrt {1-x^3}} \, dx\\ &=\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}}+\frac {1}{3} \left (1-\sqrt {3}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} x} \, dx,x,x^3\right )\\ &=\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}}-\frac {1}{3} \left (2 \left (1-\sqrt {3}\right )\right ) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt {1-x^3}\right )\\ &=-\frac {2}{3} \left (1-\sqrt {3}\right ) \tanh ^{-1}\left (\sqrt {1-x^3}\right )+\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 10.37, size = 158, normalized size = 1.12 \begin {gather*} \frac {2}{3} \left (-\tanh ^{-1}\left (\sqrt {1-x^3}\right )+\sqrt {3} \tanh ^{-1}\left (\sqrt {1-x^3}\right )-\frac {3 \sqrt {\frac {1-x}{1+\sqrt [3]{-1}}} \left (\sqrt [3]{-1}+x\right ) \sqrt {\frac {\sqrt [3]{-1}+(-1)^{2/3} x}{1+\sqrt [3]{-1}}} F\left (\sin ^{-1}\left (\sqrt {\frac {1-(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{\sqrt {\frac {1-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} \sqrt {1-x^3}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - Sqrt[3] - x)/(x*Sqrt[1 - x^3]),x]

[Out]

(2*(-ArcTanh[Sqrt[1 - x^3]] + Sqrt[3]*ArcTanh[Sqrt[1 - x^3]] - (3*Sqrt[(1 - x)/(1 + (-1)^(1/3))]*((-1)^(1/3) +
 x)*Sqrt[((-1)^(1/3) + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]*EllipticF[ArcSin[Sqrt[(1 - (-1)^(2/3)*x)/(1 + (-1)^(1/3
))]], (-1)^(1/3)])/(Sqrt[(1 - (-1)^(2/3)*x)/(1 + (-1)^(1/3))]*Sqrt[1 - x^3])))/3

________________________________________________________________________________________

Maple [A]
time = 0.28, size = 125, normalized size = 0.89

method result size
meijerg \(\frac {-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-x^{3}+1}}{2}\right )+\left (-2 \ln \left (2\right )+3 \ln \left (x \right )+i \pi \right ) \sqrt {\pi }}{3 \sqrt {\pi }}-x \hypergeom \left (\left [\frac {1}{3}, \frac {1}{2}\right ], \left [\frac {4}{3}\right ], x^{3}\right )-\frac {\sqrt {3}\, \left (-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-x^{3}+1}}{2}\right )+\left (-2 \ln \left (2\right )+3 \ln \left (x \right )+i \pi \right ) \sqrt {\pi }\right )}{3 \sqrt {\pi }}\) \(101\)
default \(\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}+\frac {2 \left (\sqrt {3}-1\right ) \arctanh \left (\sqrt {-x^{3}+1}\right )}{3}\) \(125\)
elliptic \(\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}-\frac {2 \arctanh \left (\sqrt {-x^{3}+1}\right ) \left (1-\sqrt {3}\right )}{3}\) \(127\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-x-3^(1/2))/x/(-x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*I*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((-1+x)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(
1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(
-3/2+1/2*I*3^(1/2)))^(1/2))+2/3*(3^(1/2)-1)*arctanh((-x^3+1)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x-3^(1/2))/x/(-x^3+1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((x + sqrt(3) - 1)/(sqrt(-x^3 + 1)*x), x)

________________________________________________________________________________________

Fricas [A]
time = 0.11, size = 29, normalized size = 0.21 \begin {gather*} \frac {1}{3} \, {\left (\sqrt {3} - 1\right )} \log \left (-\frac {x^{3} - 2 \, \sqrt {-x^{3} + 1} - 2}{x^{3}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x-3^(1/2))/x/(-x^3+1)^(1/2),x, algorithm="fricas")

[Out]

1/3*(sqrt(3) - 1)*log(-(x^3 - 2*sqrt(-x^3 + 1) - 2)/x^3)

________________________________________________________________________________________

Sympy [A]
time = 4.23, size = 99, normalized size = 0.70 \begin {gather*} - \frac {x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} - \sqrt {3} \left (\begin {cases} - \frac {2 \operatorname {acosh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {for}\: \frac {1}{\left |{x^{3}}\right |} > 1 \\\frac {2 i \operatorname {asin}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {otherwise} \end {cases}\right ) + \begin {cases} - \frac {2 \operatorname {acosh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {for}\: \frac {1}{\left |{x^{3}}\right |} > 1 \\\frac {2 i \operatorname {asin}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x-3**(1/2))/x/(-x**3+1)**(1/2),x)

[Out]

-x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(2*I*pi))/(3*gamma(4/3)) - sqrt(3)*Piecewise((-2*acosh(x
**(-3/2))/3, 1/Abs(x**3) > 1), (2*I*asin(x**(-3/2))/3, True)) + Piecewise((-2*acosh(x**(-3/2))/3, 1/Abs(x**3)
> 1), (2*I*asin(x**(-3/2))/3, True))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x-3^(1/2))/x/(-x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x + sqrt(3) - 1)/(sqrt(-x^3 + 1)*x), x)

________________________________________________________________________________________

Mupad [B]
time = 3.24, size = 373, normalized size = 2.65 \begin {gather*} \frac {\sqrt {3}\,\ln \left (\frac {\left (\sqrt {1-x^3}-1\right )\,{\left (\sqrt {1-x^3}+1\right )}^3}{x^6}\right )}{3}+\frac {\sqrt {x^3-1}\,\left (\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}\right )}{\sqrt {1-x^3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x + 3^(1/2) - 1)/(x*(1 - x^3)^(1/2)),x)

[Out]

(3^(1/2)*log((((1 - x^3)^(1/2) - 1)*((1 - x^3)^(1/2) + 1)^3)/x^6))/3 + ((x^3 - 1)^(1/2)*((2*((3^(1/2)*1i)/2 +
3/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 +
3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -
((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*
1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2) - (2*((3^(1/2)*1i)/2 + 3/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)
/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1
i)/2 + 3/2))^(1/2)*ellipticPi((3^(1/2)*1i)/2 + 3/2, asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*
1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/
2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2)))/(1 - x^3)^(1/2)

________________________________________________________________________________________