3.3.3 \(\int \frac {2+2 x-x^2}{(2-d+d x+x^2) \sqrt {1-x^3}} \, dx\) [203]

Optimal. Leaf size=38 \[ -\frac {2 \tan ^{-1}\left (\frac {\sqrt {1-d} (1-x)}{\sqrt {1-x^3}}\right )}{\sqrt {1-d}} \]

[Out]

-2*arctan((1-x)*(1-d)^(1/2)/(-x^3+1)^(1/2))/(1-d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 38, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {2170, 210} \begin {gather*} -\frac {2 \text {ArcTan}\left (\frac {\sqrt {1-d} (1-x)}{\sqrt {1-x^3}}\right )}{\sqrt {1-d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(2 + 2*x - x^2)/((2 - d + d*x + x^2)*Sqrt[1 - x^3]),x]

[Out]

(-2*ArcTan[(Sqrt[1 - d]*(1 - x))/Sqrt[1 - x^3]])/Sqrt[1 - d]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 2170

Int[((f_) + (g_.)*(x_) + (h_.)*(x_)^2)/(((c_) + (d_.)*(x_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbo
l] :> Dist[-2*g*h, Subst[Int[1/(2*e*h - (b*d*f - 2*a*e*h)*x^2), x], x, (1 + 2*h*(x/g))/Sqrt[a + b*x^3]], x] /;
 FreeQ[{a, b, c, d, e, f, g, h}, x] && NeQ[b*d*f - 2*a*e*h, 0] && EqQ[b*g^3 - 8*a*h^3, 0] && EqQ[g^2 + 2*f*h,
0] && EqQ[b*d*f + b*c*g - 4*a*e*h, 0]

Rubi steps

\begin {align*} \int \frac {2+2 x-x^2}{\left (2-d+d x+x^2\right ) \sqrt {1-x^3}} \, dx &=4 \text {Subst}\left (\int \frac {1}{-2-(2-2 d) x^2} \, dx,x,\frac {1-x}{\sqrt {1-x^3}}\right )\\ &=-\frac {2 \tan ^{-1}\left (\frac {\sqrt {1-d} (1-x)}{\sqrt {1-x^3}}\right )}{\sqrt {1-d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.71, size = 37, normalized size = 0.97 \begin {gather*} -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {-1+d} \sqrt {1-x^3}}{1+x+x^2}\right )}{\sqrt {-1+d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(2 + 2*x - x^2)/((2 - d + d*x + x^2)*Sqrt[1 - x^3]),x]

[Out]

(-2*ArcTanh[(Sqrt[-1 + d]*Sqrt[1 - x^3])/(1 + x + x^2)])/Sqrt[-1 + d]

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.37, size = 1908, normalized size = 50.21

method result size
default \(\text {Expression too large to display}\) \(1908\)
elliptic \(\text {Expression too large to display}\) \(1919\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^2+2*x+2)/(d*x+x^2-d+2)/(-x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*I*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((-1+x)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(
1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(
-3/2+1/2*I*3^(1/2)))^(1/2))+1/3*I/(d^2+4*d-8)^(1/2)*3^(1/2)*(I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)*(-1/(-3/2+1/
2*I*3^(1/2))+1/(-3/2+1/2*I*3^(1/2))*x)^(1/2)*(-I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3+1)^(1/2)/(-1/2+1/2*I
*3^(1/2)+1/2*d-1/2*(d^2+4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)
/(-1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2+4*d-8)^(1/2)),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))*d^2-1/3*I*3^(1/2)*(I
*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)*(-1/(-3/2+1/2*I*3^(1/2))+1/(-3/2+1/2*I*3^(1/2))*x)^(1/2)*(-I*3^(1/2)*x-1/2
*I*3^(1/2)+3/2)^(1/2)/(-x^3+1)^(1/2)/(-1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2+4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(
I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(-1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2+4*d-8)^(1/2)),(I*3^(1/2)/(
-3/2+1/2*I*3^(1/2)))^(1/2))*d+4/3*I/(d^2+4*d-8)^(1/2)*3^(1/2)*(I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)*(-1/(-3/2+
1/2*I*3^(1/2))+1/(-3/2+1/2*I*3^(1/2))*x)^(1/2)*(-I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3+1)^(1/2)/(-1/2+1/2
*I*3^(1/2)+1/2*d-1/2*(d^2+4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/
2)/(-1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2+4*d-8)^(1/2)),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))*d-2/3*I*3^(1/2)*(I
*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)*(-1/(-3/2+1/2*I*3^(1/2))+1/(-3/2+1/2*I*3^(1/2))*x)^(1/2)*(-I*3^(1/2)*x-1/2
*I*3^(1/2)+3/2)^(1/2)/(-x^3+1)^(1/2)/(-1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2+4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(
I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(-1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2+4*d-8)^(1/2)),(I*3^(1/2)/(
-3/2+1/2*I*3^(1/2)))^(1/2))-8/3*I/(d^2+4*d-8)^(1/2)*3^(1/2)*(I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)*(-1/(-3/2+1/
2*I*3^(1/2))+1/(-3/2+1/2*I*3^(1/2))*x)^(1/2)*(-I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3+1)^(1/2)/(-1/2+1/2*I
*3^(1/2)+1/2*d-1/2*(d^2+4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)
/(-1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2+4*d-8)^(1/2)),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))-1/3*I/(d^2+4*d-8)^(1
/2)*3^(1/2)*(I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)*(-1/(-3/2+1/2*I*3^(1/2))+1/(-3/2+1/2*I*3^(1/2))*x)^(1/2)*(-I
*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3+1)^(1/2)/(-1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2+4*d-8)^(1/2))*EllipticPi
(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(-1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2+4*d-8)^(1/2)
),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))*d^2-1/3*I*3^(1/2)*(I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)*(-1/(-3/2+1/
2*I*3^(1/2))+1/(-3/2+1/2*I*3^(1/2))*x)^(1/2)*(-I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3+1)^(1/2)/(-1/2+1/2*I
*3^(1/2)+1/2*d+1/2*(d^2+4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)
/(-1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2+4*d-8)^(1/2)),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))*d-4/3*I/(d^2+4*d-8)^
(1/2)*3^(1/2)*(I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)*(-1/(-3/2+1/2*I*3^(1/2))+1/(-3/2+1/2*I*3^(1/2))*x)^(1/2)*(
-I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3+1)^(1/2)/(-1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2+4*d-8)^(1/2))*Elliptic
Pi(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(-1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2+4*d-8)^(1/
2)),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))*d-2/3*I*3^(1/2)*(I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)*(-1/(-3/2+1/
2*I*3^(1/2))+1/(-3/2+1/2*I*3^(1/2))*x)^(1/2)*(-I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3+1)^(1/2)/(-1/2+1/2*I
*3^(1/2)+1/2*d+1/2*(d^2+4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)
/(-1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2+4*d-8)^(1/2)),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))+8/3*I/(d^2+4*d-8)^(1
/2)*3^(1/2)*(I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)*(-1/(-3/2+1/2*I*3^(1/2))+1/(-3/2+1/2*I*3^(1/2))*x)^(1/2)*(-I
*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3+1)^(1/2)/(-1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2+4*d-8)^(1/2))*EllipticPi
(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(-1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2+4*d-8)^(1/2)
),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+2*x+2)/(d*x+x^2-d+2)/(-x^3+1)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(d^2-4*(2-d)>0)', see `assume?`
 for more de

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 191, normalized size = 5.03 \begin {gather*} \left [\frac {\log \left (-\frac {2 \, {\left (3 \, d - 4\right )} x^{3} - x^{4} - {\left (d^{2} - 2 \, d + 4\right )} x^{2} - 4 \, \sqrt {-x^{3} + 1} {\left ({\left (d - 2\right )} x - x^{2} - d\right )} \sqrt {d - 1} - d^{2} + 2 \, {\left (d^{2} - 2 \, d\right )} x - 4 \, d + 4}{2 \, d x^{3} + x^{4} + {\left (d^{2} - 2 \, d + 4\right )} x^{2} + d^{2} - 2 \, {\left (d^{2} - 2 \, d\right )} x - 4 \, d + 4}\right )}{2 \, \sqrt {d - 1}}, -\frac {\sqrt {-d + 1} \arctan \left (-\frac {\sqrt {-x^{3} + 1} {\left ({\left (d - 2\right )} x - x^{2} - d\right )} \sqrt {-d + 1}}{2 \, {\left ({\left (d - 1\right )} x^{3} - d + 1\right )}}\right )}{d - 1}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+2*x+2)/(d*x+x^2-d+2)/(-x^3+1)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-(2*(3*d - 4)*x^3 - x^4 - (d^2 - 2*d + 4)*x^2 - 4*sqrt(-x^3 + 1)*((d - 2)*x - x^2 - d)*sqrt(d - 1) -
d^2 + 2*(d^2 - 2*d)*x - 4*d + 4)/(2*d*x^3 + x^4 + (d^2 - 2*d + 4)*x^2 + d^2 - 2*(d^2 - 2*d)*x - 4*d + 4))/sqrt
(d - 1), -sqrt(-d + 1)*arctan(-1/2*sqrt(-x^3 + 1)*((d - 2)*x - x^2 - d)*sqrt(-d + 1)/((d - 1)*x^3 - d + 1))/(d
 - 1)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \left (- \frac {2 x}{d x \sqrt {1 - x^{3}} - d \sqrt {1 - x^{3}} + x^{2} \sqrt {1 - x^{3}} + 2 \sqrt {1 - x^{3}}}\right )\, dx - \int \frac {x^{2}}{d x \sqrt {1 - x^{3}} - d \sqrt {1 - x^{3}} + x^{2} \sqrt {1 - x^{3}} + 2 \sqrt {1 - x^{3}}}\, dx - \int \left (- \frac {2}{d x \sqrt {1 - x^{3}} - d \sqrt {1 - x^{3}} + x^{2} \sqrt {1 - x^{3}} + 2 \sqrt {1 - x^{3}}}\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**2+2*x+2)/(d*x+x**2-d+2)/(-x**3+1)**(1/2),x)

[Out]

-Integral(-2*x/(d*x*sqrt(1 - x**3) - d*sqrt(1 - x**3) + x**2*sqrt(1 - x**3) + 2*sqrt(1 - x**3)), x) - Integral
(x**2/(d*x*sqrt(1 - x**3) - d*sqrt(1 - x**3) + x**2*sqrt(1 - x**3) + 2*sqrt(1 - x**3)), x) - Integral(-2/(d*x*
sqrt(1 - x**3) - d*sqrt(1 - x**3) + x**2*sqrt(1 - x**3) + 2*sqrt(1 - x**3)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+2*x+2)/(d*x+x^2-d+2)/(-x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x^2 - 2*x - 2)/(sqrt(-x^3 + 1)*(d*x + x^2 - d + 2)), x)

________________________________________________________________________________________

Mupad [B]
time = 0.14, size = 677, normalized size = 17.82 \begin {gather*} \frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}+\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {d}{2}-\frac {\sqrt {d^2+4\,d-8}}{2}+1};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\,\left (d+\left (d+2\right )\,\left (\frac {d}{2}-\frac {\sqrt {d^2+4\,d-8}}{2}\right )-4\right )}{\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}\,\left (\frac {d}{2}-\frac {\sqrt {d^2+4\,d-8}}{2}+1\right )\,\sqrt {d^2+4\,d-8}}-\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {d}{2}+\frac {\sqrt {d^2+4\,d-8}}{2}+1};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\,\left (d+\left (d+2\right )\,\left (\frac {d}{2}+\frac {\sqrt {d^2+4\,d-8}}{2}\right )-4\right )}{\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}\,\left (\frac {d}{2}+\frac {\sqrt {d^2+4\,d-8}}{2}+1\right )\,\sqrt {d^2+4\,d-8}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x - x^2 + 2)/((1 - x^3)^(1/2)*(d*x - d + x^2 + 2)),x)

[Out]

(2*((3^(1/2)*1i)/2 + 3/2)*(x^3 - 1)^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3^
(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin((-(x -
 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/((1 - x^3)^(1/2)*(((3^(1/
2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2)) +
 (2*((3^(1/2)*1i)/2 + 3/2)*(x^3 - 1)^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3
^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi(((3^(1/2)
*1i)/2 + 3/2)/(d/2 - (4*d + d^2 - 8)^(1/2)/2 + 1), asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1
i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2))*(d + (d + 2)*(d/2 - (4*d + d^2 - 8)^(1/2)/2) - 4))/((1 - x^3)^(1/2)*(((3^(
1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2)*
(d/2 - (4*d + d^2 - 8)^(1/2)/2 + 1)*(4*d + d^2 - 8)^(1/2)) - (2*((3^(1/2)*1i)/2 + 3/2)*(x^3 - 1)^(1/2)*(-(x -
(3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*
(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi(((3^(1/2)*1i)/2 + 3/2)/(d/2 + (4*d + d^2 - 8)^(1/2)/2 + 1),
 asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2))*(d + (d + 2)*(
d/2 + (4*d + d^2 - 8)^(1/2)/2) - 4))/((1 - x^3)^(1/2)*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^
(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2)*(d/2 + (4*d + d^2 - 8)^(1/2)/2 + 1)*(4*d + d^2 - 8
)^(1/2))

________________________________________________________________________________________