3.3.13 \(\int \frac {(d+e x)^2}{\sqrt {a+c x^4}} \, dx\) [213]

Optimal. Leaf size=263 \[ \frac {e^2 x \sqrt {a+c x^4}}{\sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {d e \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a+c x^4}}\right )}{\sqrt {c}}-\frac {\sqrt [4]{a} e^2 \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{c^{3/4} \sqrt {a+c x^4}}+\frac {\sqrt [4]{a} \left (\frac {\sqrt {c} d^2}{\sqrt {a}}+e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 c^{3/4} \sqrt {a+c x^4}} \]

[Out]

d*e*arctanh(x^2*c^(1/2)/(c*x^4+a)^(1/2))/c^(1/2)+e^2*x*(c*x^4+a)^(1/2)/c^(1/2)/(a^(1/2)+x^2*c^(1/2))-a^(1/4)*e
^2*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*
x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(3/4)/(c*x^4+a)^(1/
2)+1/2*a^(1/4)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arc
tan(c^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*c^(1/2))*(e^2+d^2*c^(1/2)/a^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c
^(1/2))^2)^(1/2)/c^(3/4)/(c*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 263, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {1899, 281, 223, 212, 1212, 226, 1210} \begin {gather*} \frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {\sqrt {c} d^2}{\sqrt {a}}+e^2\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 c^{3/4} \sqrt {a+c x^4}}-\frac {\sqrt [4]{a} e^2 \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{c^{3/4} \sqrt {a+c x^4}}+\frac {d e \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a+c x^4}}\right )}{\sqrt {c}}+\frac {e^2 x \sqrt {a+c x^4}}{\sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^2/Sqrt[a + c*x^4],x]

[Out]

(e^2*x*Sqrt[a + c*x^4])/(Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) + (d*e*ArcTanh[(Sqrt[c]*x^2)/Sqrt[a + c*x^4]])/Sqrt[
c] - (a^(1/4)*e^2*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1
/4)*x)/a^(1/4)], 1/2])/(c^(3/4)*Sqrt[a + c*x^4]) + (a^(1/4)*((Sqrt[c]*d^2)/Sqrt[a] + e^2)*(Sqrt[a] + Sqrt[c]*x
^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(2*c^(3/4)*Sqrt
[a + c*x^4])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1899

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[Sum[x^j*Sum[Coeff[P
q, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, n/2 - 1}], x]] /; FreeQ[{a, b
, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rubi steps

\begin {align*} \int \frac {(d+e x)^2}{\sqrt {a+c x^4}} \, dx &=\int \left (\frac {2 d e x}{\sqrt {a+c x^4}}+\frac {d^2+e^2 x^2}{\sqrt {a+c x^4}}\right ) \, dx\\ &=(2 d e) \int \frac {x}{\sqrt {a+c x^4}} \, dx+\int \frac {d^2+e^2 x^2}{\sqrt {a+c x^4}} \, dx\\ &=(d e) \text {Subst}\left (\int \frac {1}{\sqrt {a+c x^2}} \, dx,x,x^2\right )-\frac {\left (\sqrt {a} e^2\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+c x^4}} \, dx}{\sqrt {c}}+\left (d^2+\frac {\sqrt {a} e^2}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {a+c x^4}} \, dx\\ &=\frac {e^2 x \sqrt {a+c x^4}}{\sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {\sqrt [4]{a} e^2 \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{c^{3/4} \sqrt {a+c x^4}}+\frac {\left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} c^{3/4} \sqrt {a+c x^4}}+(d e) \text {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x^2}{\sqrt {a+c x^4}}\right )\\ &=\frac {e^2 x \sqrt {a+c x^4}}{\sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {d e \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a+c x^4}}\right )}{\sqrt {c}}-\frac {\sqrt [4]{a} e^2 \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{c^{3/4} \sqrt {a+c x^4}}+\frac {\left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} c^{3/4} \sqrt {a+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.08, size = 133, normalized size = 0.51 \begin {gather*} \frac {d e \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a+c x^4}}\right )}{\sqrt {c}}+\frac {d^2 x \sqrt {1+\frac {c x^4}{a}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {c x^4}{a}\right )}{\sqrt {a+c x^4}}+\frac {e^2 x^3 \sqrt {1+\frac {c x^4}{a}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-\frac {c x^4}{a}\right )}{3 \sqrt {a+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^2/Sqrt[a + c*x^4],x]

[Out]

(d*e*ArcTanh[(Sqrt[c]*x^2)/Sqrt[a + c*x^4]])/Sqrt[c] + (d^2*x*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2,
5/4, -((c*x^4)/a)])/Sqrt[a + c*x^4] + (e^2*x^3*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((c*x^4)/
a)])/(3*Sqrt[a + c*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.22, size = 197, normalized size = 0.75

method result size
default \(\frac {i e^{2} \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}+\frac {d e \ln \left (x^{2} \sqrt {c}+\sqrt {c \,x^{4}+a}\right )}{\sqrt {c}}+\frac {d^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\) \(197\)
elliptic \(\frac {d^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {d e \ln \left (2 x^{2} \sqrt {c}+2 \sqrt {c \,x^{4}+a}\right )}{\sqrt {c}}+\frac {i e^{2} \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\) \(200\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2/(c*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

I*e^2*a^(1/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4
+a)^(1/2)/c^(1/2)*(EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*c^(1/2))^(1/2),I))+d*e*ln(x
^2*c^(1/2)+(c*x^4+a)^(1/2))/c^(1/2)+d^2/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)
*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((x*e + d)^2/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 1.65, size = 105, normalized size = 0.40 \begin {gather*} \frac {d e \operatorname {asinh}{\left (\frac {\sqrt {c} x^{2}}{\sqrt {a}} \right )}}{\sqrt {c}} + \frac {d^{2} x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} + \frac {e^{2} x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {7}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2/(c*x**4+a)**(1/2),x)

[Out]

d*e*asinh(sqrt(c)*x**2/sqrt(a))/sqrt(c) + d**2*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(I*pi)/a
)/(4*sqrt(a)*gamma(5/4)) + e**2*x**3*gamma(3/4)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)
*gamma(7/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate((x*e + d)^2/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^2}{\sqrt {c\,x^4+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^2/(a + c*x^4)^(1/2),x)

[Out]

int((d + e*x)^2/(a + c*x^4)^(1/2), x)

________________________________________________________________________________________