3.1.1 \(\int \frac {1}{(2^{2/3}+x) \sqrt {1+x^3}} \, dx\) [1]

Optimal. Leaf size=145 \[ \frac {2 \tan ^{-1}\left (\frac {\sqrt {3} \left (1+\sqrt [3]{2} x\right )}{\sqrt {1+x^3}}\right )}{3 \sqrt {3}}+\frac {2 \sqrt [3]{2} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \]

[Out]

2/9*arctan((1+2^(1/3)*x)*3^(1/2)/(x^3+1)^(1/2))*3^(1/2)+2/9*2^(1/3)*(1+x)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)
),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2)/((1+x)/(1+x
+3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2159, 224, 2162, 209} \begin {gather*} \frac {2 \sqrt [3]{2} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}+\frac {2 \text {ArcTan}\left (\frac {\sqrt {3} \left (\sqrt [3]{2} x+1\right )}{\sqrt {x^3+1}}\right )}{3 \sqrt {3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((2^(2/3) + x)*Sqrt[1 + x^3]),x]

[Out]

(2*ArcTan[(Sqrt[3]*(1 + 2^(1/3)*x))/Sqrt[1 + x^3]])/(3*Sqrt[3]) + (2*2^(1/3)*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1
 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3*3^
(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 2159

Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[2/(3*c), Int[1/Sqrt[a + b*x^3], x], x
] + Dist[1/(3*c), Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^3 -
 4*a*d^3, 0]

Rule 2162

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[2*(e/d), Subst[Int[
1/(1 + 3*a*x^2), x], x, (1 + 2*d*(x/c))/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
 0] && EqQ[b*c^3 - 4*a*d^3, 0] && EqQ[2*d*e + c*f, 0]

Rubi steps

\begin {align*} \int \frac {1}{\left (2^{2/3}+x\right ) \sqrt {1+x^3}} \, dx &=\frac {\int \frac {2^{2/3}-2 x}{\left (2^{2/3}+x\right ) \sqrt {1+x^3}} \, dx}{3\ 2^{2/3}}+\frac {1}{3} \sqrt [3]{2} \int \frac {1}{\sqrt {1+x^3}} \, dx\\ &=\frac {2 \sqrt [3]{2} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {2}{3} \text {Subst}\left (\int \frac {1}{1+3 x^2} \, dx,x,\frac {1+\sqrt [3]{2} x}{\sqrt {1+x^3}}\right )\\ &=\frac {2 \tan ^{-1}\left (\frac {\sqrt {3} \left (1+\sqrt [3]{2} x\right )}{\sqrt {1+x^3}}\right )}{3 \sqrt {3}}+\frac {2 \sqrt [3]{2} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 20.22, size = 148, normalized size = 1.02 \begin {gather*} \frac {4 i \sqrt {2} \sqrt {\frac {i (1+x)}{3 i+\sqrt {3}}} \sqrt {1-x+x^2} \Pi \left (\frac {2 \sqrt {3}}{i+2 i 2^{2/3}+\sqrt {3}};\sin ^{-1}\left (\frac {\sqrt {i+\sqrt {3}-2 i x}}{\sqrt {2} \sqrt [4]{3}}\right )|\frac {2 \sqrt {3}}{3 i+\sqrt {3}}\right )}{\left (1+2\ 2^{2/3}-i \sqrt {3}\right ) \sqrt {1+x^3}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((2^(2/3) + x)*Sqrt[1 + x^3]),x]

[Out]

((4*I)*Sqrt[2]*Sqrt[(I*(1 + x))/(3*I + Sqrt[3])]*Sqrt[1 - x + x^2]*EllipticPi[(2*Sqrt[3])/(I + (2*I)*2^(2/3) +
 Sqrt[3]), ArcSin[Sqrt[I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])])/((1 + 2*2^(2/3
) - I*Sqrt[3])*Sqrt[1 + x^3])

________________________________________________________________________________________

Maple [A]
time = 1.38, size = 139, normalized size = 0.96

method result size
default \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticPi \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{2^{\frac {2}{3}}-1}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}\, \left (2^{\frac {2}{3}}-1\right )}\) \(139\)
elliptic \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticPi \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{2^{\frac {2}{3}}-1}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}\, \left (2^{\frac {2}{3}}-1\right )}\) \(139\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2^(2/3)+x)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x
-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)/(2^(2/3)-1)*EllipticPi(((1+x)/(3/2-1/2*I*3^(1/2)
))^(1/2),(-3/2+1/2*I*3^(1/2))/(2^(2/3)-1),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2^(2/3)+x)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x^3 + 1)*(x + 2^(2/3))), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.13, size = 74, normalized size = 0.51 \begin {gather*} -\frac {1}{9} \, \sqrt {3} \arctan \left (-\frac {\sqrt {3} {\left (5 \, x^{3} - 2^{\frac {2}{3}} {\left (x^{5} + x^{2}\right )} + 2^{\frac {1}{3}} {\left (7 \, x^{4} + 4 \, x\right )} + 2\right )} \sqrt {x^{3} + 1}}{6 \, {\left (2 \, x^{6} + 3 \, x^{3} + 1\right )}}\right ) + \frac {2}{3} \cdot 2^{\frac {1}{3}} {\rm weierstrassPInverse}\left (0, -4, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2^(2/3)+x)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

-1/9*sqrt(3)*arctan(-1/6*sqrt(3)*(5*x^3 - 2^(2/3)*(x^5 + x^2) + 2^(1/3)*(7*x^4 + 4*x) + 2)*sqrt(x^3 + 1)/(2*x^
6 + 3*x^3 + 1)) + 2/3*2^(1/3)*weierstrassPInverse(0, -4, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x + 2^{\frac {2}{3}}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2**(2/3)+x)/(x**3+1)**(1/2),x)

[Out]

Integral(1/(sqrt((x + 1)*(x**2 - x + 1))*(x + 2**(2/3))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2^(2/3)+x)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(x^3 + 1)*(x + 2^(2/3))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {x^3+1}\,\left (x+2^{2/3}\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((x^3 + 1)^(1/2)*(x + 2^(2/3))),x)

[Out]

int(1/((x^3 + 1)^(1/2)*(x + 2^(2/3))), x)

________________________________________________________________________________________