3.3.53 \(\int \frac {(c \sqrt {a+b x^2})^{3/2}}{x} \, dx\) [253]

Optimal. Leaf size=117 \[ \frac {2}{3} \left (c \sqrt {a+b x^2}\right )^{3/2}+\frac {\left (c \sqrt {a+b x^2}\right )^{3/2} \tan ^{-1}\left (\sqrt [4]{1+\frac {b x^2}{a}}\right )}{\left (1+\frac {b x^2}{a}\right )^{3/4}}-\frac {\left (c \sqrt {a+b x^2}\right )^{3/2} \tanh ^{-1}\left (\sqrt [4]{1+\frac {b x^2}{a}}\right )}{\left (1+\frac {b x^2}{a}\right )^{3/4}} \]

[Out]

2/3*(c*(b*x^2+a)^(1/2))^(3/2)+arctan((1+b*x^2/a)^(1/4))*(c*(b*x^2+a)^(1/2))^(3/2)/(1+b*x^2/a)^(3/4)-arctanh((1
+b*x^2/a)^(1/4))*(c*(b*x^2+a)^(1/2))^(3/2)/(1+b*x^2/a)^(3/4)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1973, 272, 52, 65, 304, 209, 212} \begin {gather*} \frac {\text {ArcTan}\left (\sqrt [4]{\frac {b x^2}{a}+1}\right ) \left (c \sqrt {a+b x^2}\right )^{3/2}}{\left (\frac {b x^2}{a}+1\right )^{3/4}}+\frac {2}{3} \left (c \sqrt {a+b x^2}\right )^{3/2}-\frac {\left (c \sqrt {a+b x^2}\right )^{3/2} \tanh ^{-1}\left (\sqrt [4]{\frac {b x^2}{a}+1}\right )}{\left (\frac {b x^2}{a}+1\right )^{3/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*Sqrt[a + b*x^2])^(3/2)/x,x]

[Out]

(2*(c*Sqrt[a + b*x^2])^(3/2))/3 + ((c*Sqrt[a + b*x^2])^(3/2)*ArcTan[(1 + (b*x^2)/a)^(1/4)])/(1 + (b*x^2)/a)^(3
/4) - ((c*Sqrt[a + b*x^2])^(3/2)*ArcTanh[(1 + (b*x^2)/a)^(1/4)])/(1 + (b*x^2)/a)^(3/4)

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 1973

Int[(u_.)*((c_.)*((a_) + (b_.)*(x_)^(n_.))^(q_))^(p_), x_Symbol] :> Dist[Simp[(c*(a + b*x^n)^q)^p/(1 + b*(x^n/
a))^(p*q)], Int[u*(1 + b*(x^n/a))^(p*q), x], x] /; FreeQ[{a, b, c, n, p, q}, x] &&  !GeQ[a, 0]

Rubi steps

\begin {align*} \int \frac {\left (c \sqrt {a+b x^2}\right )^{3/2}}{x} \, dx &=\frac {\left (c \sqrt {c \sqrt {a+b x^2}}\right ) \int \frac {\left (a+b x^2\right )^{3/4}}{x} \, dx}{\sqrt [4]{a+b x^2}}\\ &=\frac {\left (c \sqrt {c \sqrt {a+b x^2}}\right ) \text {Subst}\left (\int \frac {(a+b x)^{3/4}}{x} \, dx,x,x^2\right )}{2 \sqrt [4]{a+b x^2}}\\ &=\frac {2}{3} c \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}+\frac {\left (a c \sqrt {c \sqrt {a+b x^2}}\right ) \text {Subst}\left (\int \frac {1}{x \sqrt [4]{a+b x}} \, dx,x,x^2\right )}{2 \sqrt [4]{a+b x^2}}\\ &=\frac {2}{3} c \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}+\frac {\left (2 a c \sqrt {c \sqrt {a+b x^2}}\right ) \text {Subst}\left (\int \frac {x^2}{-\frac {a}{b}+\frac {x^4}{b}} \, dx,x,\sqrt [4]{a+b x^2}\right )}{b \sqrt [4]{a+b x^2}}\\ &=\frac {2}{3} c \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}-\frac {\left (a c \sqrt {c \sqrt {a+b x^2}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a}-x^2} \, dx,x,\sqrt [4]{a+b x^2}\right )}{\sqrt [4]{a+b x^2}}+\frac {\left (a c \sqrt {c \sqrt {a+b x^2}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a}+x^2} \, dx,x,\sqrt [4]{a+b x^2}\right )}{\sqrt [4]{a+b x^2}}\\ &=\frac {2}{3} c \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}+\frac {a^{3/4} c \sqrt {c \sqrt {a+b x^2}} \tan ^{-1}\left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right )}{\sqrt [4]{a+b x^2}}-\frac {a^{3/4} c \sqrt {c \sqrt {a+b x^2}} \tanh ^{-1}\left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right )}{\sqrt [4]{a+b x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 96, normalized size = 0.82 \begin {gather*} \frac {\left (c \sqrt {a+b x^2}\right )^{3/2} \left (2 \left (a+b x^2\right )^{3/4}+3 a^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right )-3 a^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right )\right )}{3 \left (a+b x^2\right )^{3/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*Sqrt[a + b*x^2])^(3/2)/x,x]

[Out]

((c*Sqrt[a + b*x^2])^(3/2)*(2*(a + b*x^2)^(3/4) + 3*a^(3/4)*ArcTan[(a + b*x^2)^(1/4)/a^(1/4)] - 3*a^(3/4)*ArcT
anh[(a + b*x^2)^(1/4)/a^(1/4)]))/(3*(a + b*x^2)^(3/4))

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {\left (c \sqrt {b \,x^{2}+a}\right )^{\frac {3}{2}}}{x}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*(b*x^2+a)^(1/2))^(3/2)/x,x)

[Out]

int((c*(b*x^2+a)^(1/2))^(3/2)/x,x)

________________________________________________________________________________________

Maxima [A]
time = 0.51, size = 118, normalized size = 1.01 \begin {gather*} \frac {3 \, a c^{4} {\left (\frac {2 \, \arctan \left (\frac {\sqrt {\sqrt {b x^{2} + a} c}}{\left (a c^{2}\right )^{\frac {1}{4}}}\right )}{\left (a c^{2}\right )^{\frac {1}{4}}} + \frac {\log \left (\frac {\sqrt {\sqrt {b x^{2} + a} c} - \left (a c^{2}\right )^{\frac {1}{4}}}{\sqrt {\sqrt {b x^{2} + a} c} + \left (a c^{2}\right )^{\frac {1}{4}}}\right )}{\left (a c^{2}\right )^{\frac {1}{4}}}\right )} + 4 \, \left (\sqrt {b x^{2} + a} c\right )^{\frac {3}{2}} c^{2}}{6 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x^2+a)^(1/2))^(3/2)/x,x, algorithm="maxima")

[Out]

1/6*(3*a*c^4*(2*arctan(sqrt(sqrt(b*x^2 + a)*c)/(a*c^2)^(1/4))/(a*c^2)^(1/4) + log((sqrt(sqrt(b*x^2 + a)*c) - (
a*c^2)^(1/4))/(sqrt(sqrt(b*x^2 + a)*c) + (a*c^2)^(1/4)))/(a*c^2)^(1/4)) + 4*(sqrt(b*x^2 + a)*c)^(3/2)*c^2)/c^2

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x^2+a)^(1/2))^(3/2)/x,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (c \sqrt {a + b x^{2}}\right )^{\frac {3}{2}}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x**2+a)**(1/2))**(3/2)/x,x)

[Out]

Integral((c*sqrt(a + b*x**2))**(3/2)/x, x)

________________________________________________________________________________________

Giac [A]
time = 3.19, size = 190, normalized size = 1.62 \begin {gather*} -\frac {1}{12} \, {\left (6 \, \sqrt {2} \left (-a\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} + 2 \, {\left (b x^{2} + a\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right ) + 6 \, \sqrt {2} \left (-a\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} - 2 \, {\left (b x^{2} + a\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right ) - 3 \, \sqrt {2} \left (-a\right )^{\frac {3}{4}} \log \left (\sqrt {2} {\left (b x^{2} + a\right )}^{\frac {1}{4}} \left (-a\right )^{\frac {1}{4}} + \sqrt {b x^{2} + a} + \sqrt {-a}\right ) + 3 \, \sqrt {2} \left (-a\right )^{\frac {3}{4}} \log \left (-\sqrt {2} {\left (b x^{2} + a\right )}^{\frac {1}{4}} \left (-a\right )^{\frac {1}{4}} + \sqrt {b x^{2} + a} + \sqrt {-a}\right ) - 8 \, {\left (b x^{2} + a\right )}^{\frac {3}{4}}\right )} c^{\frac {3}{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x^2+a)^(1/2))^(3/2)/x,x, algorithm="giac")

[Out]

-1/12*(6*sqrt(2)*(-a)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(-a)^(1/4) + 2*(b*x^2 + a)^(1/4))/(-a)^(1/4)) + 6*sqrt
(2)*(-a)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(-a)^(1/4) - 2*(b*x^2 + a)^(1/4))/(-a)^(1/4)) - 3*sqrt(2)*(-a)^(3/
4)*log(sqrt(2)*(b*x^2 + a)^(1/4)*(-a)^(1/4) + sqrt(b*x^2 + a) + sqrt(-a)) + 3*sqrt(2)*(-a)^(3/4)*log(-sqrt(2)*
(b*x^2 + a)^(1/4)*(-a)^(1/4) + sqrt(b*x^2 + a) + sqrt(-a)) - 8*(b*x^2 + a)^(3/4))*c^(3/2)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c\,\sqrt {b\,x^2+a}\right )}^{3/2}}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*(a + b*x^2)^(1/2))^(3/2)/x,x)

[Out]

int((c*(a + b*x^2)^(1/2))^(3/2)/x, x)

________________________________________________________________________________________