3.3.55 \(\int x^2 (c \sqrt {a+b x^2})^{3/2} \, dx\) [255]

Optimal. Leaf size=152 \[ \frac {2 a x \left (c \sqrt {a+b x^2}\right )^{3/2}}{15 b}+\frac {2}{9} x^3 \left (c \sqrt {a+b x^2}\right )^{3/2}-\frac {4 a^2 x \left (c \sqrt {a+b x^2}\right )^{3/2}}{15 b \left (a+b x^2\right )}+\frac {4 a^{3/2} \left (c \sqrt {a+b x^2}\right )^{3/2} E\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{15 b^{3/2} \left (1+\frac {b x^2}{a}\right )^{3/4}} \]

[Out]

2/15*a*x*(c*(b*x^2+a)^(1/2))^(3/2)/b+2/9*x^3*(c*(b*x^2+a)^(1/2))^(3/2)-4/15*a^2*x*(c*(b*x^2+a)^(1/2))^(3/2)/b/
(b*x^2+a)+4/15*a^(3/2)*(cos(1/2*arctan(x*b^(1/2)/a^(1/2)))^2)^(1/2)/cos(1/2*arctan(x*b^(1/2)/a^(1/2)))*Ellipti
cE(sin(1/2*arctan(x*b^(1/2)/a^(1/2))),2^(1/2))*(c*(b*x^2+a)^(1/2))^(3/2)/b^(3/2)/(1+b*x^2/a)^(3/4)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {1973, 285, 327, 233, 202} \begin {gather*} \frac {4 a^{3/2} \left (c \sqrt {a+b x^2}\right )^{3/2} E\left (\left .\frac {1}{2} \text {ArcTan}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{15 b^{3/2} \left (\frac {b x^2}{a}+1\right )^{3/4}}-\frac {4 a^2 x \left (c \sqrt {a+b x^2}\right )^{3/2}}{15 b \left (a+b x^2\right )}+\frac {2 a x \left (c \sqrt {a+b x^2}\right )^{3/2}}{15 b}+\frac {2}{9} x^3 \left (c \sqrt {a+b x^2}\right )^{3/2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*(c*Sqrt[a + b*x^2])^(3/2),x]

[Out]

(2*a*x*(c*Sqrt[a + b*x^2])^(3/2))/(15*b) + (2*x^3*(c*Sqrt[a + b*x^2])^(3/2))/9 - (4*a^2*x*(c*Sqrt[a + b*x^2])^
(3/2))/(15*b*(a + b*x^2)) + (4*a^(3/2)*(c*Sqrt[a + b*x^2])^(3/2)*EllipticE[ArcTan[(Sqrt[b]*x)/Sqrt[a]]/2, 2])/
(15*b^(3/2)*(1 + (b*x^2)/a)^(3/4))

Rule 202

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2/(a^(5/4)*Rt[b/a, 2]))*EllipticE[(1/2)*ArcTan[Rt[b/a, 2]
*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 233

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[2*(x/(a + b*x^2)^(1/4)), x] - Dist[a, Int[1/(a + b*x^2)^(5
/4), x], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 1973

Int[(u_.)*((c_.)*((a_) + (b_.)*(x_)^(n_.))^(q_))^(p_), x_Symbol] :> Dist[Simp[(c*(a + b*x^n)^q)^p/(1 + b*(x^n/
a))^(p*q)], Int[u*(1 + b*(x^n/a))^(p*q), x], x] /; FreeQ[{a, b, c, n, p, q}, x] &&  !GeQ[a, 0]

Rubi steps

\begin {align*} \int x^2 \left (c \sqrt {a+b x^2}\right )^{3/2} \, dx &=\frac {\left (c \sqrt {c \sqrt {a+b x^2}}\right ) \int x^2 \left (a+b x^2\right )^{3/4} \, dx}{\sqrt [4]{a+b x^2}}\\ &=\frac {2}{9} c x^3 \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}+\frac {\left (a c \sqrt {c \sqrt {a+b x^2}}\right ) \int \frac {x^2}{\sqrt [4]{a+b x^2}} \, dx}{3 \sqrt [4]{a+b x^2}}\\ &=\frac {2 a c x \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}}{15 b}+\frac {2}{9} c x^3 \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}-\frac {\left (2 a^2 c \sqrt {c \sqrt {a+b x^2}}\right ) \int \frac {1}{\sqrt [4]{a+b x^2}} \, dx}{15 b \sqrt [4]{a+b x^2}}\\ &=\frac {2 a c x \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}}{15 b}+\frac {2}{9} c x^3 \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}-\frac {\left (2 a^2 c \sqrt {c \sqrt {a+b x^2}} \sqrt [4]{1+\frac {b x^2}{a}}\right ) \int \frac {1}{\sqrt [4]{1+\frac {b x^2}{a}}} \, dx}{15 b \sqrt {a+b x^2}}\\ &=-\frac {4 a^2 c x \sqrt {c \sqrt {a+b x^2}}}{15 b \sqrt {a+b x^2}}+\frac {2 a c x \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}}{15 b}+\frac {2}{9} c x^3 \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}+\frac {\left (2 a^2 c \sqrt {c \sqrt {a+b x^2}} \sqrt [4]{1+\frac {b x^2}{a}}\right ) \int \frac {1}{\left (1+\frac {b x^2}{a}\right )^{5/4}} \, dx}{15 b \sqrt {a+b x^2}}\\ &=-\frac {4 a^2 c x \sqrt {c \sqrt {a+b x^2}}}{15 b \sqrt {a+b x^2}}+\frac {2 a c x \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}}{15 b}+\frac {2}{9} c x^3 \sqrt {c \sqrt {a+b x^2}} \sqrt {a+b x^2}+\frac {4 a^{5/2} c \sqrt {c \sqrt {a+b x^2}} \sqrt [4]{1+\frac {b x^2}{a}} E\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{15 b^{3/2} \sqrt {a+b x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 7.58, size = 68, normalized size = 0.45 \begin {gather*} \frac {2 x \left (c \sqrt {a+b x^2}\right )^{3/2} \left (a+b x^2-\frac {a \, _2F_1\left (-\frac {3}{4},\frac {1}{2};\frac {3}{2};-\frac {b x^2}{a}\right )}{\left (1+\frac {b x^2}{a}\right )^{3/4}}\right )}{9 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*(c*Sqrt[a + b*x^2])^(3/2),x]

[Out]

(2*x*(c*Sqrt[a + b*x^2])^(3/2)*(a + b*x^2 - (a*Hypergeometric2F1[-3/4, 1/2, 3/2, -((b*x^2)/a)])/(1 + (b*x^2)/a
)^(3/4)))/(9*b)

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int x^{2} \left (c \sqrt {b \,x^{2}+a}\right )^{\frac {3}{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(c*(b*x^2+a)^(1/2))^(3/2),x)

[Out]

int(x^2*(c*(b*x^2+a)^(1/2))^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*(b*x^2+a)^(1/2))^(3/2),x, algorithm="maxima")

[Out]

integrate((sqrt(b*x^2 + a)*c)^(3/2)*x^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*(b*x^2+a)^(1/2))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^2 + a)*sqrt(sqrt(b*x^2 + a)*c)*c*x^2, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \left (c \sqrt {a + b x^{2}}\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(c*(b*x**2+a)**(1/2))**(3/2),x)

[Out]

Integral(x**2*(c*sqrt(a + b*x**2))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*(b*x^2+a)^(1/2))^(3/2),x, algorithm="giac")

[Out]

integrate((sqrt(b*x^2 + a)*c)^(3/2)*x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^2\,{\left (c\,\sqrt {b\,x^2+a}\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(c*(a + b*x^2)^(1/2))^(3/2),x)

[Out]

int(x^2*(c*(a + b*x^2)^(1/2))^(3/2), x)

________________________________________________________________________________________