3.3.68 \(\int \frac {\sqrt {\frac {e (a+b x^2)}{c+d x^2}}}{x^5} \, dx\) [268]

Optimal. Leaf size=208 \[ -\frac {(b c-a d)^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{4 c^2 \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )^2}+\frac {(b c-5 a d) (b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{8 a c^2 \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )}+\frac {(b c-a d) (b c+3 a d) \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{8 a^{3/2} c^{5/2}} \]

[Out]

1/8*(-a*d+b*c)*(3*a*d+b*c)*arctanh(c^(1/2)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/a^(1/2)/e^(1/2))*e^(1/2)/a^(3/2)/c^(5
/2)-1/4*(-a*d+b*c)^2*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c^2/(a-c*(b*x^2+a)/(d*x^2+c))^2+1/8*(-5*a*d+b*c)*(-a*d+b*c)
*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/a/c^2/(a-c*(b*x^2+a)/(d*x^2+c))

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 208, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {1981, 1980, 466, 393, 214} \begin {gather*} \frac {\sqrt {e} (3 a d+b c) (b c-a d) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{8 a^{3/2} c^{5/2}}-\frac {(b c-a d)^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{4 c^2 \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )^2}+\frac {(b c-5 a d) (b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{8 a c^2 \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[(e*(a + b*x^2))/(c + d*x^2)]/x^5,x]

[Out]

-1/4*((b*c - a*d)^2*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(c^2*(a - (c*(a + b*x^2))/(c + d*x^2))^2) + ((b*c - 5*a
*d)*(b*c - a*d)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(8*a*c^2*(a - (c*(a + b*x^2))/(c + d*x^2))) + ((b*c - a*d)*
(b*c + 3*a*d)*Sqrt[e]*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[a]*Sqrt[e])])/(8*a^(3/2)*c^(5/
2))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 393

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d))*x*((a + b*x^n)^(p
 + 1)/(a*b*n*(p + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x]
 /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 466

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(-a)^(m/2 - 1)*(b*c - a*d)*x
*((a + b*x^2)^(p + 1)/(2*b^(m/2 + 1)*(p + 1))), x] + Dist[1/(2*b^(m/2 + 1)*(p + 1)), Int[(a + b*x^2)^(p + 1)*E
xpandToSum[2*b*(p + 1)*x^2*Together[(b^(m/2)*x^(m - 2)*(c + d*x^2) - (-a)^(m/2 - 1)*(b*c - a*d))/(a + b*x^2)]
- (-a)^(m/2 - 1)*(b*c - a*d), x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IGtQ[
m/2, 0] && (IntegerQ[p] || EqQ[m + 2*p + 1, 0])

Rule 1980

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_Symbol] :> With[{q = Denominator[p]}
, Dist[q*e*(b*c - a*d), Subst[Int[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a
+ b*x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] && IntegerQ[m]

Rule 1981

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Dist[1/n, Sub
st[Int[x^(Simplify[(m + 1)/n] - 1)*(e*((a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n,
 p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{x^5} \, dx &=((b c-a d) e) \text {Subst}\left (\int \frac {x^2 \left (b e-d x^2\right )}{\left (-a e+c x^2\right )^3} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=-\frac {(b c-a d)^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{4 c^2 \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )^2}-\frac {((b c-a d) e) \text {Subst}\left (\int \frac {-(b c-a d) e+4 c d x^2}{\left (-a e+c x^2\right )^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )}{4 c^2}\\ &=-\frac {(b c-a d)^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{4 c^2 \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )^2}+\frac {(b c-5 a d) (b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{8 a c^2 \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )}-\frac {((b c-a d) (b c+3 a d) e) \text {Subst}\left (\int \frac {1}{-a e+c x^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )}{8 a c^2}\\ &=-\frac {(b c-a d)^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{4 c^2 \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )^2}+\frac {(b c-5 a d) (b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{8 a c^2 \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )}+\frac {(b c-a d) (b c+3 a d) \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{8 a^{3/2} c^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.18, size = 174, normalized size = 0.84 \begin {gather*} \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2} \left (\sqrt {a} \sqrt {c} \sqrt {a+b x^2} \sqrt {c+d x^2} \left (-2 a c-b c x^2+3 a d x^2\right )+\left (b^2 c^2+2 a b c d-3 a^2 d^2\right ) x^4 \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )\right )}{8 a^{3/2} c^{5/2} x^4 \sqrt {a+b x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[(e*(a + b*x^2))/(c + d*x^2)]/x^5,x]

[Out]

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*Sqrt[c + d*x^2]*(Sqrt[a]*Sqrt[c]*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]*(-2*a*c -
b*c*x^2 + 3*a*d*x^2) + (b^2*c^2 + 2*a*b*c*d - 3*a^2*d^2)*x^4*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c
 + d*x^2])]))/(8*a^(3/2)*c^(5/2)*x^4*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(558\) vs. \(2(184)=368\).
time = 0.09, size = 559, normalized size = 2.69

method result size
risch \(-\frac {\left (d \,x^{2}+c \right ) \left (-3 a d \,x^{2}+b c \,x^{2}+2 a c \right ) \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}{8 c^{2} x^{4} a}+\frac {\left (-\frac {3 a \ln \left (\frac {2 a c e +\left (a d e +b c e \right ) x^{2}+2 \sqrt {a c e}\, \sqrt {d e b \,x^{4}+\left (a d e +b c e \right ) x^{2}+a c e}}{x^{2}}\right ) d^{2}}{16 c^{2} \sqrt {a c e}}+\frac {\ln \left (\frac {2 a c e +\left (a d e +b c e \right ) x^{2}+2 \sqrt {a c e}\, \sqrt {d e b \,x^{4}+\left (a d e +b c e \right ) x^{2}+a c e}}{x^{2}}\right ) b d}{8 c \sqrt {a c e}}+\frac {\ln \left (\frac {2 a c e +\left (a d e +b c e \right ) x^{2}+2 \sqrt {a c e}\, \sqrt {d e b \,x^{4}+\left (a d e +b c e \right ) x^{2}+a c e}}{x^{2}}\right ) b^{2}}{16 a \sqrt {a c e}}\right ) \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{b \,x^{2}+a}\) \(326\)
default \(-\frac {\sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (10 b \,d^{2} \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, x^{6} a \sqrt {a c}+2 b^{2} d \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, x^{6} c \sqrt {a c}+3 a^{3} \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) d^{2} c \,x^{4}-2 \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) d b \,a^{2} c^{2} x^{4}-c^{3} \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) b^{2} a \,x^{4}+10 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, d^{2} a^{2} x^{4} \sqrt {a c}+8 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, a b c d \,x^{4}+2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, b^{2} c^{2} x^{4} \sqrt {a c}-10 \left (b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c \right )^{\frac {3}{2}} d a \,x^{2} \sqrt {a c}-2 \left (b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c \right )^{\frac {3}{2}} b c \,x^{2} \sqrt {a c}+4 \left (b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c \right )^{\frac {3}{2}} a c \sqrt {a c}\right )}{16 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, c^{3} a^{2} x^{4} \sqrt {a c}}\) \(559\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^5,x,method=_RETURNVERBOSE)

[Out]

-1/16*(e*(b*x^2+a)/(d*x^2+c))^(1/2)*(d*x^2+c)*(10*b*d^2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*x^6*a*(a*c)^(1/2)+
2*b^2*d*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*x^6*c*(a*c)^(1/2)+3*a^3*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4
+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*d^2*c*x^4-2*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2
+a*c)^(1/2)+2*a*c)/x^2)*d*b*a^2*c^2*x^4-c^3*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1
/2)+2*a*c)/x^2)*b^2*a*x^4+10*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*d^2*a^2*x^4*(a*c)^(1/2)+8*(b*d*x^4+a*d*x^2+b*
c*x^2+a*c)^(1/2)*(a*c)^(1/2)*a*b*c*d*x^4+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*b^2*c^2*x^4*(a*c)^(1/2)-10*(b*d
*x^4+a*d*x^2+b*c*x^2+a*c)^(3/2)*d*a*x^2*(a*c)^(1/2)-2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(3/2)*b*c*x^2*(a*c)^(1/2)+
4*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(3/2)*a*c*(a*c)^(1/2))/((d*x^2+c)*(b*x^2+a))^(1/2)/c^3/a^2/x^4/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 249, normalized size = 1.20 \begin {gather*} -\frac {1}{16} \, {\left (\frac {2 \, {\left ({\left (b^{2} c^{3} - 6 \, a b c^{2} d + 5 \, a^{2} c d^{2}\right )} \left (\frac {b x^{2} + a}{d x^{2} + c}\right )^{\frac {3}{2}} + {\left (a b^{2} c^{2} + 2 \, a^{2} b c d - 3 \, a^{3} d^{2}\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}}\right )}}{a^{3} c^{2} - \frac {2 \, {\left (b x^{2} + a\right )} a^{2} c^{3}}{d x^{2} + c} + \frac {{\left (b x^{2} + a\right )}^{2} a c^{4}}{{\left (d x^{2} + c\right )}^{2}}} + \frac {{\left (b^{2} c^{2} + 2 \, a b c d - 3 \, a^{2} d^{2}\right )} \log \left (\frac {c \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} - \sqrt {a c}}{c \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} + \sqrt {a c}}\right )}{\sqrt {a c} a c^{2}}\right )} e^{\frac {1}{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^5,x, algorithm="maxima")

[Out]

-1/16*(2*((b^2*c^3 - 6*a*b*c^2*d + 5*a^2*c*d^2)*((b*x^2 + a)/(d*x^2 + c))^(3/2) + (a*b^2*c^2 + 2*a^2*b*c*d - 3
*a^3*d^2)*sqrt((b*x^2 + a)/(d*x^2 + c)))/(a^3*c^2 - 2*(b*x^2 + a)*a^2*c^3/(d*x^2 + c) + (b*x^2 + a)^2*a*c^4/(d
*x^2 + c)^2) + (b^2*c^2 + 2*a*b*c*d - 3*a^2*d^2)*log((c*sqrt((b*x^2 + a)/(d*x^2 + c)) - sqrt(a*c))/(c*sqrt((b*
x^2 + a)/(d*x^2 + c)) + sqrt(a*c)))/(sqrt(a*c)*a*c^2))*e^(1/2)

________________________________________________________________________________________

Fricas [A]
time = 0.66, size = 416, normalized size = 2.00 \begin {gather*} \left [-\frac {{\left (b^{2} c^{2} + 2 \, a b c d - 3 \, a^{2} d^{2}\right )} \sqrt {a c} x^{4} e^{\frac {1}{2}} \log \left (\frac {{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b c d + a d^{2}\right )} x^{4} + 2 \, a c^{2} + {\left (b c^{2} + 3 \, a c d\right )} x^{2}\right )} \sqrt {a c} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}}}{x^{4}}\right ) + 4 \, {\left (2 \, a^{2} c^{3} + {\left (a b c^{2} d - 3 \, a^{2} c d^{2}\right )} x^{4} + {\left (a b c^{3} - a^{2} c^{2} d\right )} x^{2}\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} e^{\frac {1}{2}}}{32 \, a^{2} c^{3} x^{4}}, -\frac {{\left (b^{2} c^{2} + 2 \, a b c d - 3 \, a^{2} d^{2}\right )} \sqrt {-a c} x^{4} \arctan \left (\frac {{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {-a c} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}}}{2 \, {\left (a b c x^{2} + a^{2} c\right )}}\right ) e^{\frac {1}{2}} + 2 \, {\left (2 \, a^{2} c^{3} + {\left (a b c^{2} d - 3 \, a^{2} c d^{2}\right )} x^{4} + {\left (a b c^{3} - a^{2} c^{2} d\right )} x^{2}\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} e^{\frac {1}{2}}}{16 \, a^{2} c^{3} x^{4}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^5,x, algorithm="fricas")

[Out]

[-1/32*((b^2*c^2 + 2*a*b*c*d - 3*a^2*d^2)*sqrt(a*c)*x^4*e^(1/2)*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a
^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((b*c*d + a*d^2)*x^4 + 2*a*c^2 + (b*c^2 + 3*a*c*d)*x^2)*sqrt(a*c)*sqrt(
(b*x^2 + a)/(d*x^2 + c)))/x^4) + 4*(2*a^2*c^3 + (a*b*c^2*d - 3*a^2*c*d^2)*x^4 + (a*b*c^3 - a^2*c^2*d)*x^2)*sqr
t((b*x^2 + a)/(d*x^2 + c))*e^(1/2))/(a^2*c^3*x^4), -1/16*((b^2*c^2 + 2*a*b*c*d - 3*a^2*d^2)*sqrt(-a*c)*x^4*arc
tan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt(-a*c)*sqrt((b*x^2 + a)/(d*x^2 + c))/(a*b*c*x^2 + a^2*c))*e^(1/2) + 2*(2
*a^2*c^3 + (a*b*c^2*d - 3*a^2*c*d^2)*x^4 + (a*b*c^3 - a^2*c^2*d)*x^2)*sqrt((b*x^2 + a)/(d*x^2 + c))*e^(1/2))/(
a^2*c^3*x^4)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x**2+a)/(d*x**2+c))**(1/2)/x**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 481 vs. \(2 (181) = 362\).
time = 5.84, size = 481, normalized size = 2.31 \begin {gather*} -\frac {1}{8} \, {\left (\frac {{\left (b^{2} c^{2} + 2 \, a b c d - 3 \, a^{2} d^{2}\right )} \arctan \left (-\frac {\sqrt {b d} x^{2} - \sqrt {b d x^{4} + b c x^{2} + a d x^{2} + a c}}{\sqrt {-a c}}\right )}{\sqrt {-a c} a c^{2}} - \frac {{\left (\sqrt {b d} x^{2} - \sqrt {b d x^{4} + b c x^{2} + a d x^{2} + a c}\right )}^{3} b^{2} c^{2} + {\left (\sqrt {b d} x^{2} - \sqrt {b d x^{4} + b c x^{2} + a d x^{2} + a c}\right )} a b^{2} c^{3} + 2 \, {\left (\sqrt {b d} x^{2} - \sqrt {b d x^{4} + b c x^{2} + a d x^{2} + a c}\right )}^{3} a b c d + 10 \, {\left (\sqrt {b d} x^{2} - \sqrt {b d x^{4} + b c x^{2} + a d x^{2} + a c}\right )} a^{2} b c^{2} d - 3 \, {\left (\sqrt {b d} x^{2} - \sqrt {b d x^{4} + b c x^{2} + a d x^{2} + a c}\right )}^{3} a^{2} d^{2} + 5 \, {\left (\sqrt {b d} x^{2} - \sqrt {b d x^{4} + b c x^{2} + a d x^{2} + a c}\right )} a^{3} c d^{2} + 8 \, {\left (\sqrt {b d} x^{2} - \sqrt {b d x^{4} + b c x^{2} + a d x^{2} + a c}\right )}^{2} \sqrt {b d} a b c^{2} + 8 \, \sqrt {b d} a^{3} c^{2} d}{{\left ({\left (\sqrt {b d} x^{2} - \sqrt {b d x^{4} + b c x^{2} + a d x^{2} + a c}\right )}^{2} - a c\right )}^{2} a c^{2}}\right )} e^{\frac {1}{2}} \mathrm {sgn}\left (d x^{2} + c\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^5,x, algorithm="giac")

[Out]

-1/8*((b^2*c^2 + 2*a*b*c*d - 3*a^2*d^2)*arctan(-(sqrt(b*d)*x^2 - sqrt(b*d*x^4 + b*c*x^2 + a*d*x^2 + a*c))/sqrt
(-a*c))/(sqrt(-a*c)*a*c^2) - ((sqrt(b*d)*x^2 - sqrt(b*d*x^4 + b*c*x^2 + a*d*x^2 + a*c))^3*b^2*c^2 + (sqrt(b*d)
*x^2 - sqrt(b*d*x^4 + b*c*x^2 + a*d*x^2 + a*c))*a*b^2*c^3 + 2*(sqrt(b*d)*x^2 - sqrt(b*d*x^4 + b*c*x^2 + a*d*x^
2 + a*c))^3*a*b*c*d + 10*(sqrt(b*d)*x^2 - sqrt(b*d*x^4 + b*c*x^2 + a*d*x^2 + a*c))*a^2*b*c^2*d - 3*(sqrt(b*d)*
x^2 - sqrt(b*d*x^4 + b*c*x^2 + a*d*x^2 + a*c))^3*a^2*d^2 + 5*(sqrt(b*d)*x^2 - sqrt(b*d*x^4 + b*c*x^2 + a*d*x^2
 + a*c))*a^3*c*d^2 + 8*(sqrt(b*d)*x^2 - sqrt(b*d*x^4 + b*c*x^2 + a*d*x^2 + a*c))^2*sqrt(b*d)*a*b*c^2 + 8*sqrt(
b*d)*a^3*c^2*d)/(((sqrt(b*d)*x^2 - sqrt(b*d*x^4 + b*c*x^2 + a*d*x^2 + a*c))^2 - a*c)^2*a*c^2))*e^(1/2)*sgn(d*x
^2 + c)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}}}{x^5} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e*(a + b*x^2))/(c + d*x^2))^(1/2)/x^5,x)

[Out]

int(((e*(a + b*x^2))/(c + d*x^2))^(1/2)/x^5, x)

________________________________________________________________________________________