3.3.75 \(\int \frac {\sqrt {\frac {e (a+b x^2)}{c+d x^2}}}{x^6} \, dx\) [275]

Optimal. Leaf size=424 \[ -\frac {d \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{15 a^2 c^3}-\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}-\frac {(b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a c^2 x^3}+\frac {\left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a^2 c^3 x}+\frac {\sqrt {d} \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 a^2 c^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {b \sqrt {d} (b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 a^2 c^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}} \]

[Out]

-1/15*d*(-8*a^2*d^2+3*a*b*c*d+2*b^2*c^2)*x*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/a^2/c^3-1/5*(d*x^2+c)*(e*(b*x^2+a)/(d
*x^2+c))^(1/2)/c/x^5-1/15*(-4*a*d+b*c)*(d*x^2+c)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/a/c^2/x^3+1/15*(-8*a^2*d^2+3*a*
b*c*d+2*b^2*c^2)*(d*x^2+c)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/a^2/c^3/x+1/15*(-8*a^2*d^2+3*a*b*c*d+2*b^2*c^2)*(1/(1
+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*d^(1/2)*(e
*(b*x^2+a)/(d*x^2+c))^(1/2)/a^2/c^(5/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)-1/15*b*(-4*a*d+b*c)*(1/(1+d*x^2/c))^(1
/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*d^(1/2)*(e*(b*x^2+a)/(d
*x^2+c))^(1/2)/a^2/c^(3/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.33, antiderivative size = 424, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {1986, 486, 597, 545, 429, 506, 422} \begin {gather*} \frac {\sqrt {d} \left (-8 a^2 d^2+3 a b c d+2 b^2 c^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 a^2 c^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {b \sqrt {d} (b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 a^2 c^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {d x \left (-8 a^2 d^2+3 a b c d+2 b^2 c^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{15 a^2 c^3}+\frac {\left (c+d x^2\right ) \left (-8 a^2 d^2+3 a b c d+2 b^2 c^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{15 a^2 c^3 x}-\frac {\left (c+d x^2\right ) (b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{15 a c^2 x^3}-\frac {\left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{5 c x^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[(e*(a + b*x^2))/(c + d*x^2)]/x^6,x]

[Out]

-1/15*(d*(2*b^2*c^2 + 3*a*b*c*d - 8*a^2*d^2)*x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(a^2*c^3) - (Sqrt[(e*(a + b*
x^2))/(c + d*x^2)]*(c + d*x^2))/(5*c*x^5) - ((b*c - 4*a*d)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(15*
a*c^2*x^3) + ((2*b^2*c^2 + 3*a*b*c*d - 8*a^2*d^2)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(15*a^2*c^3*x
) + (Sqrt[d]*(2*b^2*c^2 + 3*a*b*c*d - 8*a^2*d^2)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x
)/Sqrt[c]], 1 - (b*c)/(a*d)])/(15*a^2*c^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]) - (b*Sqrt[d]*(b*c - 4*a*d
)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(15*a^2*c^(3/2)*S
qrt[(c*(a + b*x^2))/(a*(c + d*x^2))])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 486

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{x^6} \, dx &=\frac {\left (\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {\sqrt {a+b x^2}}{x^6 \sqrt {c+d x^2}} \, dx}{\sqrt {a+b x^2}}\\ &=-\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}+\frac {\left (\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {b c-4 a d-3 b d x^2}{x^4 \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{5 c \sqrt {a+b x^2}}\\ &=-\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}-\frac {(b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a c^2 x^3}-\frac {\left (\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {2 b^2 c^2+3 a b c d-8 a^2 d^2+b d (b c-4 a d) x^2}{x^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{15 a c^2 \sqrt {a+b x^2}}\\ &=-\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}-\frac {(b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a c^2 x^3}+\frac {\left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a^2 c^3 x}+\frac {\left (\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {-a b c d (b c-4 a d)-b d \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{15 a^2 c^3 \sqrt {a+b x^2}}\\ &=-\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}-\frac {(b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a c^2 x^3}+\frac {\left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a^2 c^3 x}-\frac {\left (b d (b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{15 a c^2 \sqrt {a+b x^2}}-\frac {\left (b d \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{15 a^2 c^3 \sqrt {a+b x^2}}\\ &=-\frac {d \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{15 a^2 c^3}-\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}-\frac {(b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a c^2 x^3}+\frac {\left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a^2 c^3 x}-\frac {b \sqrt {d} (b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 a^2 c^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {\left (d \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{15 a^2 c^2 \sqrt {a+b x^2}}\\ &=-\frac {d \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{15 a^2 c^3}-\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}-\frac {(b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a c^2 x^3}+\frac {\left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a^2 c^3 x}+\frac {\sqrt {d} \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 a^2 c^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {b \sqrt {d} (b c-4 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 a^2 c^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.77, size = 302, normalized size = 0.71 \begin {gather*} -\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\sqrt {\frac {b}{a}} \left (a+b x^2\right ) \left (c+d x^2\right ) \left (-2 b^2 c^2 x^4+a b c x^2 \left (c-3 d x^2\right )+a^2 \left (3 c^2-4 c d x^2+8 d^2 x^4\right )\right )+i b c \left (-2 b^2 c^2-3 a b c d+8 a^2 d^2\right ) x^5 \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-2 i b c \left (-b^2 c^2-a b c d+2 a^2 d^2\right ) x^5 \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )\right )}{15 a^2 \sqrt {\frac {b}{a}} c^3 x^5 \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[(e*(a + b*x^2))/(c + d*x^2)]/x^6,x]

[Out]

-1/15*(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(Sqrt[b/a]*(a + b*x^2)*(c + d*x^2)*(-2*b^2*c^2*x^4 + a*b*c*x^2*(c - 3
*d*x^2) + a^2*(3*c^2 - 4*c*d*x^2 + 8*d^2*x^4)) + I*b*c*(-2*b^2*c^2 - 3*a*b*c*d + 8*a^2*d^2)*x^5*Sqrt[1 + (b*x^
2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - (2*I)*b*c*(-(b^2*c^2) - a*b*c*d + 2
*a^2*d^2)*x^5*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/(a^2*Sq
rt[b/a]*c^3*x^5*(a + b*x^2))

________________________________________________________________________________________

Maple [A]
time = 0.07, size = 708, normalized size = 1.67

method result size
risch \(-\frac {\left (d \,x^{2}+c \right ) \left (8 d^{2} a^{2} x^{4}-3 a b c d \,x^{4}-2 b^{2} c^{2} x^{4}-4 a^{2} d c \,x^{2}+a b \,c^{2} x^{2}+3 a^{2} c^{2}\right ) \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}{15 c^{3} x^{5} a^{2}}+\frac {b d \left (-\frac {2 \left (8 a^{2} d^{2}-3 a b c d -2 b^{2} c^{2}\right ) a c e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (a d e +b c e +e \left (a d -b c \right )\right )}+\frac {4 a^{2} c d \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}-\frac {a b \,c^{2} \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}\right ) \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{15 a^{2} c^{3} \left (b \,x^{2}+a \right )}\) \(539\)
default \(-\frac {\sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (8 \sqrt {-\frac {b}{a}}\, a^{2} b \,d^{3} x^{8}-3 \sqrt {-\frac {b}{a}}\, a \,b^{2} c \,d^{2} x^{8}-2 \sqrt {-\frac {b}{a}}\, b^{3} c^{2} d \,x^{8}+4 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b c \,d^{2} x^{5}-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{2} c^{2} d \,x^{5}-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{3} c^{3} x^{5}-8 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b c \,d^{2} x^{5}+3 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{2} c^{2} d \,x^{5}+2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{3} c^{3} x^{5}+8 \sqrt {-\frac {b}{a}}\, a^{3} d^{3} x^{6}+\sqrt {-\frac {b}{a}}\, a^{2} b c \,d^{2} x^{6}-4 \sqrt {-\frac {b}{a}}\, a \,b^{2} c^{2} d \,x^{6}-2 \sqrt {-\frac {b}{a}}\, b^{3} c^{3} x^{6}+4 \sqrt {-\frac {b}{a}}\, a^{3} c \,d^{2} x^{4}-3 \sqrt {-\frac {b}{a}}\, a^{2} b \,c^{2} d \,x^{4}-\sqrt {-\frac {b}{a}}\, a \,b^{2} c^{3} x^{4}-\sqrt {-\frac {b}{a}}\, a^{3} c^{2} d \,x^{2}+4 \sqrt {-\frac {b}{a}}\, a^{2} b \,c^{3} x^{2}+3 \sqrt {-\frac {b}{a}}\, a^{3} c^{3}\right )}{15 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, c^{3} x^{5} a^{2} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}\) \(708\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^6,x,method=_RETURNVERBOSE)

[Out]

-1/15*(e*(b*x^2+a)/(d*x^2+c))^(1/2)*(d*x^2+c)*(8*(-b/a)^(1/2)*a^2*b*d^3*x^8-3*(-b/a)^(1/2)*a*b^2*c*d^2*x^8-2*(
-b/a)^(1/2)*b^3*c^2*d*x^8+4*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*
a^2*b*c*d^2*x^5-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b^2*c^2*
d*x^5-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^3*c^3*x^5-8*((b*x^
2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^2*b*c*d^2*x^5+3*((b*x^2+a)/a)^(1
/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b^2*c^2*d*x^5+2*((b*x^2+a)/a)^(1/2)*((d*x^
2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^3*c^3*x^5+8*(-b/a)^(1/2)*a^3*d^3*x^6+(-b/a)^(1/2)*a^
2*b*c*d^2*x^6-4*(-b/a)^(1/2)*a*b^2*c^2*d*x^6-2*(-b/a)^(1/2)*b^3*c^3*x^6+4*(-b/a)^(1/2)*a^3*c*d^2*x^4-3*(-b/a)^
(1/2)*a^2*b*c^2*d*x^4-(-b/a)^(1/2)*a*b^2*c^3*x^4-(-b/a)^(1/2)*a^3*c^2*d*x^2+4*(-b/a)^(1/2)*a^2*b*c^3*x^2+3*(-b
/a)^(1/2)*a^3*c^3)/((d*x^2+c)*(b*x^2+a))^(1/2)/c^3/x^5/a^2/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^6,x, algorithm="maxima")

[Out]

e^(1/2)*integrate(sqrt((b*x^2 + a)/(d*x^2 + c))/x^6, x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^6,x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x**2+a)/(d*x**2+c))**(1/2)/x**6,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^6,x, algorithm="giac")

[Out]

integrate(sqrt((b*x^2 + a)/(d*x^2 + c))*e^(1/2)/x^6, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}}}{x^6} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e*(a + b*x^2))/(c + d*x^2))^(1/2)/x^6,x)

[Out]

int(((e*(a + b*x^2))/(c + d*x^2))^(1/2)/x^6, x)

________________________________________________________________________________________