3.3.80 \(\int \frac {(\frac {e (a+b x^2)}{c+d x^2})^{3/2}}{x^3} \, dx\) [280]

Optimal. Leaf size=165 \[ \frac {3 (b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{2 c^2}+\frac {(b c-a d) \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{2 c \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )}-\frac {3 \sqrt {a} (b c-a d) e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{2 c^{5/2}} \]

[Out]

1/2*(-a*d+b*c)*(e*(b*x^2+a)/(d*x^2+c))^(3/2)/c/(a-c*(b*x^2+a)/(d*x^2+c))-3/2*(-a*d+b*c)*e^(3/2)*arctanh(c^(1/2
)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/a^(1/2)/e^(1/2))*a^(1/2)/c^(5/2)+3/2*(-a*d+b*c)*e*(e*(b*x^2+a)/(d*x^2+c))^(1/2
)/c^2

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 165, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {1981, 1980, 294, 327, 214} \begin {gather*} -\frac {3 \sqrt {a} e^{3/2} (b c-a d) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{2 c^{5/2}}+\frac {3 e (b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{2 c^2}+\frac {(b c-a d) \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{2 c \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^3,x]

[Out]

(3*(b*c - a*d)*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(2*c^2) + ((b*c - a*d)*((e*(a + b*x^2))/(c + d*x^2))^(3/2)
)/(2*c*(a - (c*(a + b*x^2))/(c + d*x^2))) - (3*Sqrt[a]*(b*c - a*d)*e^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2
))/(c + d*x^2)])/(Sqrt[a]*Sqrt[e])])/(2*c^(5/2))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 1980

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_Symbol] :> With[{q = Denominator[p]}
, Dist[q*e*(b*c - a*d), Subst[Int[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a
+ b*x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] && IntegerQ[m]

Rule 1981

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Dist[1/n, Sub
st[Int[x^(Simplify[(m + 1)/n] - 1)*(e*((a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n,
 p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x^3} \, dx &=((b c-a d) e) \text {Subst}\left (\int \frac {x^4}{\left (-a e+c x^2\right )^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=\frac {(b c-a d) \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{2 c \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )}+\frac {(3 (b c-a d) e) \text {Subst}\left (\int \frac {x^2}{-a e+c x^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )}{2 c}\\ &=\frac {3 (b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{2 c^2}+\frac {(b c-a d) \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{2 c \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )}+\frac {\left (3 a (b c-a d) e^2\right ) \text {Subst}\left (\int \frac {1}{-a e+c x^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )}{2 c^2}\\ &=\frac {3 (b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{2 c^2}+\frac {(b c-a d) \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{2 c \left (a-\frac {c \left (a+b x^2\right )}{c+d x^2}\right )}-\frac {3 \sqrt {a} (b c-a d) e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{2 c^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 4.02, size = 146, normalized size = 0.88 \begin {gather*} \frac {e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\sqrt {c} \sqrt {a+b x^2} \left (2 b c x^2-a \left (c+3 d x^2\right )\right )-3 \sqrt {a} (b c-a d) x^2 \sqrt {c+d x^2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )\right )}{2 c^{5/2} x^2 \sqrt {a+b x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^3,x]

[Out]

(e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(Sqrt[c]*Sqrt[a + b*x^2]*(2*b*c*x^2 - a*(c + 3*d*x^2)) - 3*Sqrt[a]*(b*c -
 a*d)*x^2*Sqrt[c + d*x^2]*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])]))/(2*c^(5/2)*x^2*Sqrt[a
 + b*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(640\) vs. \(2(141)=282\).
time = 0.13, size = 641, normalized size = 3.88

method result size
risch \(-\frac {a \left (d \,x^{2}+c \right ) e \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}{2 c^{2} x^{2}}+\frac {\left (\frac {3 a^{2} \ln \left (\frac {2 a c e +\left (a d e +b c e \right ) x^{2}+2 \sqrt {a c e}\, \sqrt {d e b \,x^{4}+\left (a d e +b c e \right ) x^{2}+a c e}}{x^{2}}\right ) d}{4 c^{2} \sqrt {a c e}}-\frac {3 a \ln \left (\frac {2 a c e +\left (a d e +b c e \right ) x^{2}+2 \sqrt {a c e}\, \sqrt {d e b \,x^{4}+\left (a d e +b c e \right ) x^{2}+a c e}}{x^{2}}\right ) b}{4 c \sqrt {a c e}}-\frac {x^{2} a^{2} b \,d^{2}}{c^{2} \left (a d -b c \right ) \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}+\frac {2 x^{2} a \,b^{2} d}{c \left (a d -b c \right ) \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}-\frac {x^{2} b^{3}}{\left (a d -b c \right ) \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}-\frac {a^{3} d^{2}}{c^{2} \left (a d -b c \right ) \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}+\frac {2 a^{2} b d}{c \left (a d -b c \right ) \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}-\frac {a \,b^{2}}{\left (a d -b c \right ) \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}\right ) e \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{b \,x^{2}+a}\) \(526\)
default \(-\frac {\left (-2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, b \,d^{2} x^{6}-3 \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) a^{2} c \,d^{2} x^{4}+3 \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) a b \,c^{2} d \,x^{4}-2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, a \,d^{2} x^{4}-4 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, b c d \,x^{4}-3 \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) a^{2} c^{2} d \,x^{2}+3 \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) a b \,c^{3} x^{2}+2 \left (b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c \right )^{\frac {3}{2}} \sqrt {a c}\, d \,x^{2}-2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, a c d \,x^{2}-2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, b \,c^{2} x^{2}+4 \sqrt {a c}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a c d \,x^{2}-4 \sqrt {a c}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, b \,c^{2} x^{2}+2 \left (b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c \right )^{\frac {3}{2}} \sqrt {a c}\, c \right ) \left (d \,x^{2}+c \right ) \left (\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}\right )^{\frac {3}{2}}}{4 \sqrt {a c}\, x^{2} c^{3} \left (b \,x^{2}+a \right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}}\) \(641\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/4*(-2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(a*c)^(1/2)*b*d^2*x^6-3*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^
4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*a^2*c*d^2*x^4+3*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*
c*x^2+a*c)^(1/2)+2*a*c)/x^2)*a*b*c^2*d*x^4-2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(a*c)^(1/2)*a*d^2*x^4-4*(b*d*
x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(a*c)^(1/2)*b*c*d*x^4-3*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*
x^2+a*c)^(1/2)+2*a*c)/x^2)*a^2*c^2*d*x^2+3*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/
2)+2*a*c)/x^2)*a*b*c^3*x^2+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(3/2)*(a*c)^(1/2)*d*x^2-2*(b*d*x^4+a*d*x^2+b*c*x^2+
a*c)^(1/2)*(a*c)^(1/2)*a*c*d*x^2-2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(a*c)^(1/2)*b*c^2*x^2+4*(a*c)^(1/2)*((d
*x^2+c)*(b*x^2+a))^(1/2)*a*c*d*x^2-4*(a*c)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*b*c^2*x^2+2*(b*d*x^4+a*d*x^2+b*c*
x^2+a*c)^(3/2)*(a*c)^(1/2)*c)*(d*x^2+c)*(e*(b*x^2+a)/(d*x^2+c))^(3/2)/(a*c)^(1/2)/x^2/c^3/(b*x^2+a)/((d*x^2+c)
*(b*x^2+a))^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.54, size = 177, normalized size = 1.07 \begin {gather*} \frac {1}{4} \, {\left (\frac {2 \, {\left (a b c - a^{2} d\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}}}{a c^{2} - \frac {{\left (b x^{2} + a\right )} c^{3}}{d x^{2} + c}} + \frac {3 \, {\left (b c - a d\right )} a \log \left (\frac {c \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} - \sqrt {a c}}{c \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} + \sqrt {a c}}\right )}{\sqrt {a c} c^{2}} + \frac {4 \, {\left (b c - a d\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}}}{c^{2}}\right )} e^{\frac {3}{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^3,x, algorithm="maxima")

[Out]

1/4*(2*(a*b*c - a^2*d)*sqrt((b*x^2 + a)/(d*x^2 + c))/(a*c^2 - (b*x^2 + a)*c^3/(d*x^2 + c)) + 3*(b*c - a*d)*a*l
og((c*sqrt((b*x^2 + a)/(d*x^2 + c)) - sqrt(a*c))/(c*sqrt((b*x^2 + a)/(d*x^2 + c)) + sqrt(a*c)))/(sqrt(a*c)*c^2
) + 4*(b*c - a*d)*sqrt((b*x^2 + a)/(d*x^2 + c))/c^2)*e^(3/2)

________________________________________________________________________________________

Fricas [A]
time = 0.66, size = 330, normalized size = 2.00 \begin {gather*} \left [-\frac {3 \, {\left (b c - a d\right )} x^{2} \sqrt {\frac {a}{c}} e^{\frac {3}{2}} \log \left (\frac {{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x^{2} + 4 \, {\left ({\left (b c^{2} d + a c d^{2}\right )} x^{4} + 2 \, a c^{3} + {\left (b c^{3} + 3 \, a c^{2} d\right )} x^{2}\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} \sqrt {\frac {a}{c}}}{x^{4}}\right ) - 4 \, {\left ({\left (2 \, b c - 3 \, a d\right )} x^{2} - a c\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} e^{\frac {3}{2}}}{8 \, c^{2} x^{2}}, \frac {3 \, {\left (b c - a d\right )} x^{2} \sqrt {-\frac {a}{c}} \arctan \left (\frac {{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} \sqrt {-\frac {a}{c}}}{2 \, {\left (a b x^{2} + a^{2}\right )}}\right ) e^{\frac {3}{2}} + 2 \, {\left ({\left (2 \, b c - 3 \, a d\right )} x^{2} - a c\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} e^{\frac {3}{2}}}{4 \, c^{2} x^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^3,x, algorithm="fricas")

[Out]

[-1/8*(3*(b*c - a*d)*x^2*sqrt(a/c)*e^(3/2)*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 +
 a^2*c*d)*x^2 + 4*((b*c^2*d + a*c*d^2)*x^4 + 2*a*c^3 + (b*c^3 + 3*a*c^2*d)*x^2)*sqrt((b*x^2 + a)/(d*x^2 + c))*
sqrt(a/c))/x^4) - 4*((2*b*c - 3*a*d)*x^2 - a*c)*sqrt((b*x^2 + a)/(d*x^2 + c))*e^(3/2))/(c^2*x^2), 1/4*(3*(b*c
- a*d)*x^2*sqrt(-a/c)*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*x^2 + a)/(d*x^2 + c))*sqrt(-a/c)/(a*b*x^2 +
 a^2))*e^(3/2) + 2*((2*b*c - 3*a*d)*x^2 - a*c)*sqrt((b*x^2 + a)/(d*x^2 + c))*e^(3/2))/(c^2*x^2)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x**2+a)/(d*x**2+c))**(3/2)/x**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^3,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(sa

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2}}{x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^3,x)

[Out]

int(((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^3, x)

________________________________________________________________________________________