3.3.86 \(\int \frac {(\frac {e (a+b x^2)}{c+d x^2})^{3/2}}{x^2} \, dx\) [286]

Optimal. Leaf size=307 \[ -\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}-\frac {(b c-2 a d) e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c^2}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{c^2 d x}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{c^{3/2} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}} \]

[Out]

-(-a*d+b*c)*e*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c/d/x-(-2*a*d+b*c)*e*x*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c^2+(-2*a*d+b
*c)*e*(d*x^2+c)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c^2/d/x+(-2*a*d+b*c)*e*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*E
llipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c^(3/2)/d^(1/2)/
(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)+b*e*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x
^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c^(1/2)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.22, antiderivative size = 307, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {1986, 479, 597, 545, 429, 506, 422} \begin {gather*} \frac {e (b c-2 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{c^{3/2} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {e \left (c+d x^2\right ) (b c-2 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c^2 d x}-\frac {e x (b c-2 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c^2}-\frac {e (b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^2,x]

[Out]

-(((b*c - a*d)*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(c*d*x)) - ((b*c - 2*a*d)*e*x*Sqrt[(e*(a + b*x^2))/(c + d*
x^2)])/c^2 + ((b*c - 2*a*d)*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(c^2*d*x) + ((b*c - 2*a*d)*e*Sqrt
[(e*(a + b*x^2))/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(c^(3/2)*Sqrt[d]*Sqrt[(
c*(a + b*x^2))/(a*(c + d*x^2))]) + (b*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]
], 1 - (b*c)/(a*d)])/(Sqrt[c]*Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 479

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-(c*b -
 a*d))*(e*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(a*b*e*n*(p + 1))), x] + Dist[1/(a*b*n*(p + 1)),
 Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 2)*Simp[c*(c*b*n*(p + 1) + (c*b - a*d)*(m + 1)) + d*(c*b*n*(
p + 1) + (c*b - a*d)*(m + n*(q - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0]
 && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rubi steps

\begin {align*} \int \frac {\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x^2} \, dx &=\frac {\left (e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \left (c+d x^2\right )^{3/2}} \, dx}{\sqrt {a+b x^2}}\\ &=-\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}-\frac {\left (e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {a (b c-2 a d)-a b d x^2}{x^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{c d \sqrt {a+b x^2}}\\ &=-\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{c^2 d x}+\frac {\left (e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {a^2 b c d-a b d (b c-2 a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{a c^2 d \sqrt {a+b x^2}}\\ &=-\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{c^2 d x}+\frac {\left (a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{c \sqrt {a+b x^2}}-\frac {\left (b (b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{c^2 \sqrt {a+b x^2}}\\ &=-\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}-\frac {(b c-2 a d) e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c^2}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{c^2 d x}+\frac {b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {\left ((b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{c \sqrt {a+b x^2}}\\ &=-\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}-\frac {(b c-2 a d) e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c^2}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{c^2 d x}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{c^{3/2} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 4.38, size = 228, normalized size = 0.74 \begin {gather*} -\frac {e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\sqrt {\frac {b}{a}} d \left (a+b x^2\right ) \left (a c-b c x^2+2 a d x^2\right )+i b c (-b c+2 a d) x \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-i b c (-b c+a d) x \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )\right )}{\sqrt {\frac {b}{a}} c^2 d x \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^2,x]

[Out]

-((e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(Sqrt[b/a]*d*(a + b*x^2)*(a*c - b*c*x^2 + 2*a*d*x^2) + I*b*c*(-(b*c) +
2*a*d)*x*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - I*b*c*(-(b*c
) + a*d)*x*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/(Sqrt[b/a]
*c^2*d*x*(a + b*x^2)))

________________________________________________________________________________________

Maple [A]
time = 0.07, size = 670, normalized size = 2.18

method result size
default \(-\frac {\left (\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}\right )^{\frac {3}{2}} \left (d \,x^{2}+c \right ) \left (\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{4}-\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, b^{2} c d \,x^{4}+\sqrt {-\frac {b}{a}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a b \,d^{2} x^{4}+\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a b c d x -\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, b^{2} c^{2} x -2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a b c d x +\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, b^{2} c^{2} x +\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a^{2} d^{2} x^{2}-\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a b c d \,x^{2}+\sqrt {-\frac {b}{a}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a^{2} d^{2} x^{2}+\sqrt {-\frac {b}{a}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a b c d \,x^{2}+\sqrt {-\frac {b}{a}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a^{2} c d \right )}{\left (b \,x^{2}+a \right )^{2} c^{2} x \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, d}\) \(670\)
risch \(-\frac {a \left (d \,x^{2}+c \right ) e \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}{c^{2} x}+\frac {\left (-\frac {2 a^{2} b d c e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (a d e +b c e +e \left (a d -b c \right )\right )}+\frac {b^{2} c^{2} \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )}{d \sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}-\frac {c \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \left (\frac {\left (d e b \,x^{2}+a d e \right ) x}{c \left (a d -b c \right ) e \sqrt {\left (x^{2}+\frac {c}{d}\right ) \left (d e b \,x^{2}+a d e \right )}}+\frac {\left (\frac {1}{c}-\frac {a d}{c \left (a d -b c \right )}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}+\frac {2 b d a e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )\right )}{\left (a d -b c \right ) \sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (a d e +b c e +e \left (a d -b c \right )\right )}\right )}{d}\right ) e \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{c^{2} \left (b \,x^{2}+a \right )}\) \(723\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-(e*(b*x^2+a)/(d*x^2+c))^(3/2)*(d*x^2+c)*((b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*a*b*d^2*x^4-(b*d*x^
4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*b^2*c*d*x^4+(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*a*b*d^2*x^4+((b
*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((d*x^2+c)*(b*x^2+a))^(1/2)*a*b
*c*d*x-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((d*x^2+c)*(b*x^2+a))
^(1/2)*b^2*c^2*x-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((d*x^2+c
)*(b*x^2+a))^(1/2)*a*b*c*d*x+((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))
*((d*x^2+c)*(b*x^2+a))^(1/2)*b^2*c^2*x+(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*a^2*d^2*x^2-(b*d*x^4+a
*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*a*b*c*d*x^2+(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*a^2*d^2*x^2+(-b/a)
^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*a*b*c*d*x^2+(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*a^2*c*d)/(b*x^2+a)^2/c
^2/x/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^2,x, algorithm="maxima")

[Out]

e^(3/2)*integrate(((b*x^2 + a)/(d*x^2 + c))^(3/2)/x^2, x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^2,x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x**2+a)/(d*x**2+c))**(3/2)/x**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^2,x, algorithm="giac")

[Out]

integrate(((b*x^2 + a)/(d*x^2 + c))^(3/2)*e^(3/2)/x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2}}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^2,x)

[Out]

int(((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^2, x)

________________________________________________________________________________________