3.3.99 \(\int \frac {1}{x \sqrt {\frac {e (a+b x^2)}{c+d x^2}}} \, dx\) [299]

Optimal. Leaf size=112 \[ -\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} \sqrt {e}}+\frac {\sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {b} \sqrt {e}}\right )}{\sqrt {b} \sqrt {e}} \]

[Out]

-arctanh(c^(1/2)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/a^(1/2)/e^(1/2))*c^(1/2)/a^(1/2)/e^(1/2)+arctanh(d^(1/2)*(e*(b*
x^2+a)/(d*x^2+c))^(1/2)/b^(1/2)/e^(1/2))*d^(1/2)/b^(1/2)/e^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {1981, 1980, 400, 214} \begin {gather*} \frac {\sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {b} \sqrt {e}}\right )}{\sqrt {b} \sqrt {e}}-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} \sqrt {e}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]),x]

[Out]

-((Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[a]*Sqrt[e])])/(Sqrt[a]*Sqrt[e])) + (Sqrt[
d]*ArcTanh[(Sqrt[d]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[b]*Sqrt[e])])/(Sqrt[b]*Sqrt[e])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 400

Int[1/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x^n),
 x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0]

Rule 1980

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_Symbol] :> With[{q = Denominator[p]}
, Dist[q*e*(b*c - a*d), Subst[Int[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a
+ b*x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] && IntegerQ[m]

Rule 1981

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Dist[1/n, Sub
st[Int[x^(Simplify[(m + 1)/n] - 1)*(e*((a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n,
 p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx &=((b c-a d) e) \text {Subst}\left (\int \frac {1}{\left (-a e+c x^2\right ) \left (b e-d x^2\right )} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=c \text {Subst}\left (\int \frac {1}{-a e+c x^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )+d \text {Subst}\left (\int \frac {1}{b e-d x^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} \sqrt {e}}+\frac {\sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {b} \sqrt {e}}\right )}{\sqrt {b} \sqrt {e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.46, size = 147, normalized size = 1.31 \begin {gather*} \frac {\sqrt {a+b x^2} \left (-\sqrt {b} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )+\sqrt {a} \sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b} \sqrt {c+d x^2}}\right )\right )}{\sqrt {a} \sqrt {b} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]),x]

[Out]

(Sqrt[a + b*x^2]*(-(Sqrt[b]*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])]) + Sqrt[a]*Sq
rt[d]*ArcTanh[(Sqrt[d]*Sqrt[a + b*x^2])/(Sqrt[b]*Sqrt[c + d*x^2])]))/(Sqrt[a]*Sqrt[b]*Sqrt[(e*(a + b*x^2))/(c
+ d*x^2)]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(178\) vs. \(2(84)=168\).
time = 0.05, size = 179, normalized size = 1.60

method result size
default \(\frac {\left (b \,x^{2}+a \right ) \left (d \ln \left (\frac {2 b d \,x^{2}+2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) \sqrt {a c}-c \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) \sqrt {b d}\right )}{2 \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {b d}\, \sqrt {a c}}\) \(179\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*(b*x^2+a)*(d*ln(1/2*(2*b*d*x^2+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*(a*
c)^(1/2)-c*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*(b*d)^(1/2))/(e*(
b*x^2+a)/(d*x^2+c))^(1/2)/((d*x^2+c)*(b*x^2+a))^(1/2)/(b*d)^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.52, size = 140, normalized size = 1.25 \begin {gather*} \frac {1}{2} \, {\left (\frac {c \log \left (\frac {c \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} - \sqrt {a c}}{c \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} + \sqrt {a c}}\right )}{\sqrt {a c}} - \frac {d \log \left (\frac {d \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} - \sqrt {b d}}{d \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} + \sqrt {b d}}\right )}{\sqrt {b d}}\right )} e^{\left (-\frac {1}{2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

1/2*(c*log((c*sqrt((b*x^2 + a)/(d*x^2 + c)) - sqrt(a*c))/(c*sqrt((b*x^2 + a)/(d*x^2 + c)) + sqrt(a*c)))/sqrt(a
*c) - d*log((d*sqrt((b*x^2 + a)/(d*x^2 + c)) - sqrt(b*d))/(d*sqrt((b*x^2 + a)/(d*x^2 + c)) + sqrt(b*d)))/sqrt(
b*d))*e^(-1/2)

________________________________________________________________________________________

Fricas [A]
time = 0.46, size = 821, normalized size = 7.33 \begin {gather*} \left [\frac {1}{4} \, {\left (\sqrt {\frac {d}{b}} \log \left (8 \, b^{2} d^{2} x^{4} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x^{2} + 4 \, {\left (2 \, b^{2} d^{2} x^{4} + b^{2} c^{2} + a b c d + {\left (3 \, b^{2} c d + a b d^{2}\right )} x^{2}\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} \sqrt {\frac {d}{b}}\right ) + \sqrt {\frac {c}{a}} \log \left (\frac {{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (a b c d + a^{2} d^{2}\right )} x^{4} + 2 \, a^{2} c^{2} + {\left (a b c^{2} + 3 \, a^{2} c d\right )} x^{2}\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} \sqrt {\frac {c}{a}}}{x^{4}}\right )\right )} e^{\left (-\frac {1}{2}\right )}, -\frac {1}{4} \, {\left (2 \, \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (2 \, b d x^{2} + b c + a d\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} \sqrt {-\frac {d}{b}}}{2 \, {\left (b d x^{2} + a d\right )}}\right ) - \sqrt {\frac {c}{a}} \log \left (\frac {{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (a b c d + a^{2} d^{2}\right )} x^{4} + 2 \, a^{2} c^{2} + {\left (a b c^{2} + 3 \, a^{2} c d\right )} x^{2}\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} \sqrt {\frac {c}{a}}}{x^{4}}\right )\right )} e^{\left (-\frac {1}{2}\right )}, \frac {1}{4} \, {\left (2 \, \sqrt {-\frac {c}{a}} \arctan \left (\frac {{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} \sqrt {-\frac {c}{a}}}{2 \, {\left (b c x^{2} + a c\right )}}\right ) + \sqrt {\frac {d}{b}} \log \left (8 \, b^{2} d^{2} x^{4} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x^{2} + 4 \, {\left (2 \, b^{2} d^{2} x^{4} + b^{2} c^{2} + a b c d + {\left (3 \, b^{2} c d + a b d^{2}\right )} x^{2}\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} \sqrt {\frac {d}{b}}\right )\right )} e^{\left (-\frac {1}{2}\right )}, \frac {1}{2} \, {\left (\sqrt {-\frac {c}{a}} \arctan \left (\frac {{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} \sqrt {-\frac {c}{a}}}{2 \, {\left (b c x^{2} + a c\right )}}\right ) - \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (2 \, b d x^{2} + b c + a d\right )} \sqrt {\frac {b x^{2} + a}{d x^{2} + c}} \sqrt {-\frac {d}{b}}}{2 \, {\left (b d x^{2} + a d\right )}}\right )\right )} e^{\left (-\frac {1}{2}\right )}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(d/b)*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2*b^2*d^2*x
^4 + b^2*c^2 + a*b*c*d + (3*b^2*c*d + a*b*d^2)*x^2)*sqrt((b*x^2 + a)/(d*x^2 + c))*sqrt(d/b)) + sqrt(c/a)*log((
(b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((a*b*c*d + a^2*d^2)*x^4 + 2*a
^2*c^2 + (a*b*c^2 + 3*a^2*c*d)*x^2)*sqrt((b*x^2 + a)/(d*x^2 + c))*sqrt(c/a))/x^4))*e^(-1/2), -1/4*(2*sqrt(-d/b
)*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt((b*x^2 + a)/(d*x^2 + c))*sqrt(-d/b)/(b*d*x^2 + a*d)) - sqrt(c/a)*log
(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((a*b*c*d + a^2*d^2)*x^4 + 2
*a^2*c^2 + (a*b*c^2 + 3*a^2*c*d)*x^2)*sqrt((b*x^2 + a)/(d*x^2 + c))*sqrt(c/a))/x^4))*e^(-1/2), 1/4*(2*sqrt(-c/
a)*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*x^2 + a)/(d*x^2 + c))*sqrt(-c/a)/(b*c*x^2 + a*c)) + sqrt(d/b)*
log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2*b^2*d^2*x^4 + b^2*c^2 + a
*b*c*d + (3*b^2*c*d + a*b*d^2)*x^2)*sqrt((b*x^2 + a)/(d*x^2 + c))*sqrt(d/b)))*e^(-1/2), 1/2*(sqrt(-c/a)*arctan
(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*x^2 + a)/(d*x^2 + c))*sqrt(-c/a)/(b*c*x^2 + a*c)) - sqrt(-d/b)*arctan(1
/2*(2*b*d*x^2 + b*c + a*d)*sqrt((b*x^2 + a)/(d*x^2 + c))*sqrt(-d/b)/(b*d*x^2 + a*d)))*e^(-1/2)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x**2+a)/(d*x**2+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(sa

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{x\,\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*((e*(a + b*x^2))/(c + d*x^2))^(1/2)),x)

[Out]

int(1/(x*((e*(a + b*x^2))/(c + d*x^2))^(1/2)), x)

________________________________________________________________________________________