3.4.3 \(\int \frac {x^2}{\sqrt {\frac {e (a+b x^2)}{c+d x^2}}} \, dx\) [303]

Optimal. Leaf size=312 \[ \frac {x \left (a+b x^2\right )}{3 b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {(b c-2 a d) x \left (a+b x^2\right )}{3 b^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {\sqrt {c} (b c-2 a d) \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b^2 \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {c^{3/2} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )} \]

[Out]

1/3*x*(b*x^2+a)/b/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+1/3*(-2*a*d+b*c)*x*(b*x^2+a)/b^2/(d*x^2+c)/(e*(b*x^2+a)/(d*x^2
+c))^(1/2)-1/3*c^(3/2)*(b*x^2+a)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/
c)^(1/2),(1-b*c/a/d)^(1/2))/b/(d*x^2+c)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-
1/3*(-2*a*d+b*c)*(b*x^2+a)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/
2),(1-b*c/a/d)^(1/2))*c^(1/2)/b^2/(d*x^2+c)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1
/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 312, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {1986, 489, 545, 429, 506, 422} \begin {gather*} -\frac {\sqrt {c} \left (a+b x^2\right ) (b c-2 a d) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b^2 \sqrt {d} \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {c^{3/2} \left (a+b x^2\right ) F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b \sqrt {d} \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {x \left (a+b x^2\right ) (b c-2 a d)}{3 b^2 \left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {x \left (a+b x^2\right )}{3 b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]

[Out]

(x*(a + b*x^2))/(3*b*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]) + ((b*c - 2*a*d)*x*(a + b*x^2))/(3*b^2*Sqrt[(e*(a + b*
x^2))/(c + d*x^2)]*(c + d*x^2)) - (Sqrt[c]*(b*c - 2*a*d)*(a + b*x^2)*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1
- (b*c)/(a*d)])/(3*b^2*Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*
x^2)) - (c^(3/2)*(a + b*x^2)*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*b*Sqrt[d]*Sqrt[(c*(a
+ b*x^2))/(a*(c + d*x^2))]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 489

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(m + n*(p + q) + 1))), x] - Dist[e^n/(b*(m + n*(p +
q) + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[a*c*(m - n + 1) + (a*d*(m - n + 1) - n*q*(b
*c - a*d))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] &&
GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx &=\frac {\sqrt {a+b x^2} \int \frac {x^2 \sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {x \left (a+b x^2\right )}{3 b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {\sqrt {a+b x^2} \int \frac {a c+(-b c+2 a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {x \left (a+b x^2\right )}{3 b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {\left (a c \sqrt {a+b x^2}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}-\frac {\left ((-b c+2 a d) \sqrt {a+b x^2}\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {x \left (a+b x^2\right )}{3 b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {(b c-2 a d) x \left (a+b x^2\right )}{3 b^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {c^{3/2} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {\left (c (-b c+2 a d) \sqrt {a+b x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 b^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {x \left (a+b x^2\right )}{3 b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {(b c-2 a d) x \left (a+b x^2\right )}{3 b^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {\sqrt {c} (b c-2 a d) \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b^2 \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {c^{3/2} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.05, size = 212, normalized size = 0.68 \begin {gather*} \frac {\sqrt {\frac {b}{a}} d x \left (a+b x^2\right ) \left (c+d x^2\right )+i c (-b c+2 a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-i c (-b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{3 b \sqrt {\frac {b}{a}} d \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]

[Out]

(Sqrt[b/a]*d*x*(a + b*x^2)*(c + d*x^2) + I*c*(-(b*c) + 2*a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*Elliptic
E[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - I*c*(-(b*c) + a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[
I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(3*b*Sqrt[b/a]*d*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))

________________________________________________________________________________________

Maple [A]
time = 0.05, size = 358, normalized size = 1.15

method result size
risch \(\frac {x \left (b \,x^{2}+a \right )}{3 b \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}-\frac {\left (-\frac {2 \left (2 a d -b c \right ) a c e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (a d e +b c e +e \left (a d -b c \right )\right )}+\frac {a c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}\right ) \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{3 b \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right )}\) \(351\)
default \(\frac {\left (b \,x^{2}+a \right ) \left (\sqrt {-\frac {b}{a}}\, b \,d^{2} x^{5}+\sqrt {-\frac {b}{a}}\, a \,d^{2} x^{3}+\sqrt {-\frac {b}{a}}\, b c d \,x^{3}+a c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) d -\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2}-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a c d +\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2}+\sqrt {-\frac {b}{a}}\, a c d x \right )}{3 \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, b \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, d}\) \(358\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*(b*x^2+a)*((-b/a)^(1/2)*b*d^2*x^5+(-b/a)^(1/2)*a*d^2*x^3+(-b/a)^(1/2)*b*c*d*x^3+a*c*((b*x^2+a)/a)^(1/2)*((
d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*d-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*Elliptic
F(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b*c^2-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*
d/b/c)^(1/2))*a*c*d+((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b*c^2+(-
b/a)^(1/2)*a*c*d*x)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)/((d*x^2+c)*(b*x^2+a))^(1/2)/b/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+
b*c*x^2+a*c)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

e^(-1/2)*integrate(x^2/sqrt((b*x^2 + a)/(d*x^2 + c)), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(e*(b*x**2+a)/(d*x**2+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

integrate(x^2*e^(-1/2)/sqrt((b*x^2 + a)/(d*x^2 + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2}{\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((e*(a + b*x^2))/(c + d*x^2))^(1/2),x)

[Out]

int(x^2/((e*(a + b*x^2))/(c + d*x^2))^(1/2), x)

________________________________________________________________________________________