3.4.13 \(\int \frac {x^4}{(\frac {e (a+b x^2)}{c+d x^2})^{3/2}} \, dx\) [313]

Optimal. Leaf size=453 \[ \frac {(7 b c-8 a d) x \left (a+b x^2\right )}{5 b^3 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {6 d x^3 \left (a+b x^2\right )}{5 b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\left (b^2 c^2-16 a b c d+16 a^2 d^2\right ) x \left (a+b x^2\right )}{5 b^4 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {x^3 \left (c+d x^2\right )}{b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {\sqrt {c} \left (b^2 c^2-16 a b c d+16 a^2 d^2\right ) \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{5 b^4 \sqrt {d} e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {c^{3/2} (7 b c-8 a d) \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{5 b^3 \sqrt {d} e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )} \]

[Out]

1/5*(-8*a*d+7*b*c)*x*(b*x^2+a)/b^3/e/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+6/5*d*x^3*(b*x^2+a)/b^2/e/(e*(b*x^2+a)/(d*x
^2+c))^(1/2)+1/5*(16*a^2*d^2-16*a*b*c*d+b^2*c^2)*x*(b*x^2+a)/b^4/e/(d*x^2+c)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-x^3
*(d*x^2+c)/b/e/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-1/5*c^(3/2)*(-8*a*d+7*b*c)*(b*x^2+a)*(1/(1+d*x^2/c))^(1/2)*(1+d*x
^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))/b^3/e/(d*x^2+c)/d^(1/2)/(c*(b*x^2
+a)/a/(d*x^2+c))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-1/5*(16*a^2*d^2-16*a*b*c*d+b^2*c^2)*(b*x^2+a)*(1/(1+d*x^2
/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)/b^4/e/(d
*x^2+c)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.36, antiderivative size = 453, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {1986, 478, 595, 596, 545, 429, 506, 422} \begin {gather*} -\frac {\sqrt {c} \left (a+b x^2\right ) \left (16 a^2 d^2-16 a b c d+b^2 c^2\right ) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{5 b^4 \sqrt {d} e \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {x \left (a+b x^2\right ) \left (16 a^2 d^2-16 a b c d+b^2 c^2\right )}{5 b^4 e \left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {c^{3/2} \left (a+b x^2\right ) (7 b c-8 a d) F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{5 b^3 \sqrt {d} e \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {x \left (a+b x^2\right ) (7 b c-8 a d)}{5 b^3 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {6 d x^3 \left (a+b x^2\right )}{5 b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {x^3 \left (c+d x^2\right )}{b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^4/((e*(a + b*x^2))/(c + d*x^2))^(3/2),x]

[Out]

((7*b*c - 8*a*d)*x*(a + b*x^2))/(5*b^3*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]) + (6*d*x^3*(a + b*x^2))/(5*b^2*e*S
qrt[(e*(a + b*x^2))/(c + d*x^2)]) + ((b^2*c^2 - 16*a*b*c*d + 16*a^2*d^2)*x*(a + b*x^2))/(5*b^4*e*Sqrt[(e*(a +
b*x^2))/(c + d*x^2)]*(c + d*x^2)) - (x^3*(c + d*x^2))/(b*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]) - (Sqrt[c]*(b^2*
c^2 - 16*a*b*c*d + 16*a^2*d^2)*(a + b*x^2)*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(5*b^4*Sqr
t[d]*e*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2)) - (c^(3/2)*(7*b*c
- 8*a*d)*(a + b*x^2)*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(5*b^3*Sqrt[d]*e*Sqrt[(c*(a + b*
x^2))/(a*(c + d*x^2))]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*n*(p + 1))), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 595

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[f*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*g*(m + n*(p + q + 1) + 1))), x] + Dis
t[1/(b*(m + n*(p + q + 1) + 1)), Int[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*((b*e - a*f)*(m + 1) + b
*e*n*(p + q + 1)) + (d*(b*e - a*f)*(m + 1) + f*n*q*(b*c - a*d) + b*e*d*n*(p + q + 1))*x^n, x], x], x] /; FreeQ
[{a, b, c, d, e, f, g, m, p}, x] && IGtQ[n, 0] && GtQ[q, 0] &&  !(EqQ[q, 1] && SimplerQ[e + f*x^n, c + d*x^n])

Rule 596

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q +
 1) + 1))), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rubi steps

\begin {align*} \int \frac {x^4}{\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx &=\frac {\sqrt {a+b x^2} \int \frac {x^4 \left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx}{e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=-\frac {x^3 \left (c+d x^2\right )}{b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\sqrt {a+b x^2} \int \frac {x^2 \sqrt {c+d x^2} \left (3 c+6 d x^2\right )}{\sqrt {a+b x^2}} \, dx}{b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {6 d x^3 \left (a+b x^2\right )}{5 b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {x^3 \left (c+d x^2\right )}{b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\sqrt {a+b x^2} \int \frac {x^2 \left (3 c (5 b c-6 a d)+3 d (7 b c-8 a d) x^2\right )}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{5 b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {(7 b c-8 a d) x \left (a+b x^2\right )}{5 b^3 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {6 d x^3 \left (a+b x^2\right )}{5 b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {x^3 \left (c+d x^2\right )}{b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {\sqrt {a+b x^2} \int \frac {3 a c d (7 b c-8 a d)-3 d \left (b^2 c^2-16 a b c d+16 a^2 d^2\right ) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{15 b^3 d e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {(7 b c-8 a d) x \left (a+b x^2\right )}{5 b^3 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {6 d x^3 \left (a+b x^2\right )}{5 b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {x^3 \left (c+d x^2\right )}{b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {\left (a c (7 b c-8 a d) \sqrt {a+b x^2}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{5 b^3 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}+\frac {\left (\left (b^2 c^2-16 a b c d+16 a^2 d^2\right ) \sqrt {a+b x^2}\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{5 b^3 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {(7 b c-8 a d) x \left (a+b x^2\right )}{5 b^3 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {6 d x^3 \left (a+b x^2\right )}{5 b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\left (b^2 c^2-16 a b c d+16 a^2 d^2\right ) x \left (a+b x^2\right )}{5 b^4 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {x^3 \left (c+d x^2\right )}{b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {c^{3/2} (7 b c-8 a d) \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{5 b^3 \sqrt {d} e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {\left (c \left (b^2 c^2-16 a b c d+16 a^2 d^2\right ) \sqrt {a+b x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{5 b^4 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {(7 b c-8 a d) x \left (a+b x^2\right )}{5 b^3 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {6 d x^3 \left (a+b x^2\right )}{5 b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\left (b^2 c^2-16 a b c d+16 a^2 d^2\right ) x \left (a+b x^2\right )}{5 b^4 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {x^3 \left (c+d x^2\right )}{b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {\sqrt {c} \left (b^2 c^2-16 a b c d+16 a^2 d^2\right ) \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{5 b^4 \sqrt {d} e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {c^{3/2} (7 b c-8 a d) \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{5 b^3 \sqrt {d} e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 4.73, size = 271, normalized size = 0.60 \begin {gather*} \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\sqrt {\frac {b}{a}} d x \left (c+d x^2\right ) \left (-8 a^2 d+a b \left (7 c-2 d x^2\right )+b^2 x^2 \left (2 c+d x^2\right )\right )-i c \left (b^2 c^2-16 a b c d+16 a^2 d^2\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+i c \left (b^2 c^2-9 a b c d+8 a^2 d^2\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )\right )}{5 b^3 \sqrt {\frac {b}{a}} d e^2 \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^4/((e*(a + b*x^2))/(c + d*x^2))^(3/2),x]

[Out]

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(Sqrt[b/a]*d*x*(c + d*x^2)*(-8*a^2*d + a*b*(7*c - 2*d*x^2) + b^2*x^2*(2*c +
 d*x^2)) - I*c*(b^2*c^2 - 16*a*b*c*d + 16*a^2*d^2)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh
[Sqrt[b/a]*x], (a*d)/(b*c)] + I*c*(b^2*c^2 - 9*a*b*c*d + 8*a^2*d^2)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*El
lipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/(5*b^3*Sqrt[b/a]*d*e^2*(a + b*x^2))

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 936, normalized size = 2.07

method result size
risch \(-\frac {x \left (-b d \,x^{2}+3 a d -2 b c \right ) \left (b \,x^{2}+a \right )}{5 b^{3} e \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}+\frac {\left (-\frac {2 \left (11 a^{2} d^{2}-11 a b c d +b^{2} c^{2}\right ) a c e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (a d e +b c e +e \left (a d -b c \right )\right )}-\frac {a \left (5 a^{2} d^{2}-13 a b c d +7 b^{2} c^{2}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )}{b \sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}+\frac {5 a^{2} \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \left (-\frac {\left (d e b \,x^{2}+b c e \right ) x}{a \left (a d -b c \right ) e \sqrt {\left (x^{2}+\frac {a}{b}\right ) \left (d e b \,x^{2}+b c e \right )}}+\frac {\left (\frac {1}{a}+\frac {b c}{a \left (a d -b c \right )}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}-\frac {2 d b c e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )\right )}{\left (a d -b c \right ) \sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (a d e +b c e +e \left (a d -b c \right )\right )}\right )}{b}\right ) \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{5 b^{3} e \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right )}\) \(780\)
default \(-\frac {\left (b \,x^{2}+a \right ) \left (-\sqrt {-\frac {b}{a}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, b^{2} d^{3} x^{7}+2 \sqrt {-\frac {b}{a}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a b \,d^{3} x^{5}-3 \sqrt {-\frac {b}{a}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, b^{2} c \,d^{2} x^{5}+5 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a^{2} d^{3} x^{3}-5 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a b c \,d^{2} x^{3}+3 \sqrt {-\frac {b}{a}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a^{2} d^{3} x^{3}-2 \sqrt {-\frac {b}{a}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, b^{2} c^{2} d \,x^{3}+8 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a^{2} c \,d^{2}-9 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a b \,c^{2} d +\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, b^{2} c^{3}-16 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a^{2} c \,d^{2}+16 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a b \,c^{2} d -\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, b^{2} c^{3}+5 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a^{2} c \,d^{2} x -5 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a b \,c^{2} d x +3 \sqrt {-\frac {b}{a}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a^{2} c \,d^{2} x -2 \sqrt {-\frac {b}{a}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a b \,c^{2} d x \right )}{5 b^{3} d \left (\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}\right )^{\frac {3}{2}} \left (d \,x^{2}+c \right )^{2} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}\) \(936\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/5*(b*x^2+a)*(-(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*b^2*d^3*x^7+2*(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/
2)*a*b*d^3*x^5-3*(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*b^2*c*d^2*x^5+5*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*
(-b/a)^(1/2)*a^2*d^3*x^3-5*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*a*b*c*d^2*x^3+3*(-b/a)^(1/2)*((d*x
^2+c)*(b*x^2+a))^(1/2)*a^2*d^3*x^3-2*(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*b^2*c^2*d*x^3+8*((b*x^2+a)/a)^(1
/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((d*x^2+c)*(b*x^2+a))^(1/2)*a^2*c*d^2-9*((b*
x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((d*x^2+c)*(b*x^2+a))^(1/2)*a*b*
c^2*d+((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((d*x^2+c)*(b*x^2+a))^
(1/2)*b^2*c^3-16*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((d*x^2+c)*
(b*x^2+a))^(1/2)*a^2*c*d^2+16*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2)
)*((d*x^2+c)*(b*x^2+a))^(1/2)*a*b*c^2*d-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/
b/c)^(1/2))*((d*x^2+c)*(b*x^2+a))^(1/2)*b^2*c^3+5*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*a^2*c*d^2*x
-5*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*a*b*c^2*d*x+3*(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*a^2
*c*d^2*x-2*(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*a*b*c^2*d*x)/b^3/d/(e*(b*x^2+a)/(d*x^2+c))^(3/2)/(d*x^2+c)
^2/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="maxima")

[Out]

e^(-3/2)*integrate(x^4/((b*x^2 + a)/(d*x^2 + c))^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(e*(b*x**2+a)/(d*x**2+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="giac")

[Out]

integrate(x^4*e^(-3/2)/((b*x^2 + a)/(d*x^2 + c))^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^4}{{\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/((e*(a + b*x^2))/(c + d*x^2))^(3/2),x)

[Out]

int(x^4/((e*(a + b*x^2))/(c + d*x^2))^(3/2), x)

________________________________________________________________________________________