3.1.11 \(\int \frac {1}{(1+\sqrt {3}-x) \sqrt {1-x^3}} \, dx\) [11]

Optimal. Leaf size=164 \[ -\frac {\tan ^{-1}\left (\frac {\sqrt {3+2 \sqrt {3}} (1-x)}{\sqrt {1-x^3}}\right )}{\sqrt {3 \left (3+2 \sqrt {3}\right )}}-\frac {\sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}} \]

[Out]

-1/3*(1-x)*EllipticF((1-x-3^(1/2))/(1-x+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2+x+1)/(1-x+3^(1
/2))^2)^(1/2)*3^(1/4)/(-x^3+1)^(1/2)/((1-x)/(1-x+3^(1/2))^2)^(1/2)-arctan((1-x)*(3+2*3^(1/2))^(1/2)/(-x^3+1)^(
1/2))/(9+6*3^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 164, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2160, 224, 2165, 209} \begin {gather*} -\frac {\sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} F\left (\text {ArcSin}\left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {\text {ArcTan}\left (\frac {\sqrt {3+2 \sqrt {3}} (1-x)}{\sqrt {1-x^3}}\right )}{\sqrt {3 \left (3+2 \sqrt {3}\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((1 + Sqrt[3] - x)*Sqrt[1 - x^3]),x]

[Out]

-(ArcTan[(Sqrt[3 + 2*Sqrt[3]]*(1 - x))/Sqrt[1 - x^3]]/Sqrt[3*(3 + 2*Sqrt[3])]) - (Sqrt[2 + Sqrt[3]]*(1 - x)*Sq
rt[(1 + x + x^2)/(1 + Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] - x)/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/
(3^(3/4)*Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*Sqrt[1 - x^3])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 2160

Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[-6*a*(d^3/(c*(b*c^3 - 28*a*d^3))), In
t[1/Sqrt[a + b*x^3], x], x] + Dist[1/(c*(b*c^3 - 28*a*d^3)), Int[Simp[c*(b*c^3 - 22*a*d^3) + 6*a*d^4*x, x]/((c
 + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0]

Rule 2165

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{k = Simplify[(d*e
+ 2*c*f)/(c*f)]}, Dist[(1 + k)*(e/d), Subst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + (1 + k)*d*(x/c))/Sqrt[a +
 b*x^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6
, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3), 0]

Rubi steps

\begin {align*} \int \frac {1}{\left (1+\sqrt {3}-x\right ) \sqrt {1-x^3}} \, dx &=\frac {\int \frac {-6 \left (1-\sqrt {3}\right )+6 x}{\left (1+\sqrt {3}-x\right ) \sqrt {1-x^3}} \, dx}{12 \sqrt {3}}+\frac {\int \frac {1}{\sqrt {1-x^3}} \, dx}{2 \sqrt {3}}\\ &=-\frac {\sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}}-\frac {\text {Subst}\left (\int \frac {1}{1+\left (3+2 \sqrt {3}\right ) x^2} \, dx,x,\frac {1-x}{\sqrt {1-x^3}}\right )}{\sqrt {3}}\\ &=-\frac {\tan ^{-1}\left (\frac {\sqrt {3+2 \sqrt {3}} (1-x)}{\sqrt {1-x^3}}\right )}{\sqrt {3 \left (3+2 \sqrt {3}\right )}}-\frac {\sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 20.11, size = 136, normalized size = 0.83 \begin {gather*} \frac {4 \sqrt {2} \sqrt {-\frac {i (-1+x)}{3 i+\sqrt {3}}} \sqrt {1+x+x^2} \Pi \left (\frac {2 \sqrt {3}}{3 i+(1+2 i) \sqrt {3}};\sin ^{-1}\left (\frac {\sqrt {i+\sqrt {3}+2 i x}}{\sqrt {2} \sqrt [4]{3}}\right )|\frac {2 \sqrt {3}}{3 i+\sqrt {3}}\right )}{\left (3 i+(1+2 i) \sqrt {3}\right ) \sqrt {1-x^3}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((1 + Sqrt[3] - x)*Sqrt[1 - x^3]),x]

[Out]

(4*Sqrt[2]*Sqrt[((-I)*(-1 + x))/(3*I + Sqrt[3])]*Sqrt[1 + x + x^2]*EllipticPi[(2*Sqrt[3])/(3*I + (1 + 2*I)*Sqr
t[3]), ArcSin[Sqrt[I + Sqrt[3] + (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])])/((3*I + (1 + 2*I)*
Sqrt[3])*Sqrt[1 - x^3])

________________________________________________________________________________________

Maple [A]
time = 0.84, size = 143, normalized size = 0.87

method result size
default \(\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}-\sqrt {3}}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}\, \left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}-\sqrt {3}\right )}\) \(143\)
elliptic \(\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}-\sqrt {3}}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}\, \left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}-\sqrt {3}\right )}\) \(143\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1-x+3^(1/2))/(-x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*I*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((-1+x)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(
1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)/(-3/2+1/2*I*3^(1/2)-3^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2
))*3^(1/2))^(1/2),I*3^(1/2)/(-3/2+1/2*I*3^(1/2)-3^(1/2)),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="maxima")

[Out]

-integrate(1/(sqrt(-x^3 + 1)*(x - sqrt(3) - 1)), x)

________________________________________________________________________________________

Fricas [A]
time = 0.25, size = 56, normalized size = 0.34 \begin {gather*} -\frac {1}{6} \, \sqrt {2 \, \sqrt {3} - 3} \arctan \left (\frac {\sqrt {-x^{3} + 1} {\left (\sqrt {3} {\left (x^{2} + 4 \, x - 2\right )} + 6 \, x - 6\right )} \sqrt {2 \, \sqrt {3} - 3}}{6 \, {\left (x^{3} - 1\right )}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="fricas")

[Out]

-1/6*sqrt(2*sqrt(3) - 3)*arctan(1/6*sqrt(-x^3 + 1)*(sqrt(3)*(x^2 + 4*x - 2) + 6*x - 6)*sqrt(2*sqrt(3) - 3)/(x^
3 - 1))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {1}{x \sqrt {1 - x^{3}} - \sqrt {3} \sqrt {1 - x^{3}} - \sqrt {1 - x^{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x+3**(1/2))/(-x**3+1)**(1/2),x)

[Out]

-Integral(1/(x*sqrt(1 - x**3) - sqrt(3)*sqrt(1 - x**3) - sqrt(1 - x**3)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Unable to divide,
 perhaps due to rounding error%%%{1,[2]%%%} / %%%{%%{[2,4]:[1,0,-3]%%},[2]%%%} Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F(-1)]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \text {Hanged} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((1 - x^3)^(1/2)*(3^(1/2) - x + 1)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________