3.4.18 \(\int x^5 \sqrt {a+\frac {b}{c+d x^2}} \, dx\) [318]

Optimal. Leaf size=216 \[ -\frac {\left (b^2+4 a b c-8 a^2 c^2\right ) \left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{16 a^2 d^3}-\frac {(b+4 a c) \left (c+d x^2\right )^2 \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{8 a d^3}+\frac {\left (c+d x^2\right )^3 \left (\frac {b+a c+a d x^2}{c+d x^2}\right )^{3/2}}{6 a d^3}+\frac {b \left (b^2+4 a b c+8 a^2 c^2\right ) \tanh ^{-1}\left (\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {a}}\right )}{16 a^{5/2} d^3} \]

[Out]

1/6*(d*x^2+c)^3*((a*d*x^2+a*c+b)/(d*x^2+c))^(3/2)/a/d^3+1/16*b*(8*a^2*c^2+4*a*b*c+b^2)*arctanh(((a*d*x^2+a*c+b
)/(d*x^2+c))^(1/2)/a^(1/2))/a^(5/2)/d^3-1/16*(-8*a^2*c^2+4*a*b*c+b^2)*(d*x^2+c)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1
/2)/a^2/d^3-1/8*(4*a*c+b)*(d*x^2+c)^2*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/a/d^3

________________________________________________________________________________________

Rubi [A]
time = 0.29, antiderivative size = 217, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1985, 1981, 1980, 474, 466, 393, 214} \begin {gather*} \frac {\left (8 a^2 c^2-b (4 a c+b)\right ) \left (c+d x^2\right ) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{16 a^2 d^3}+\frac {b \left (8 a^2 c^2+4 a b c+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a}}\right )}{16 a^{5/2} d^3}+\frac {\left (c+d x^2\right )^3 \left (\frac {a c+a d x^2+b}{c+d x^2}\right )^{3/2}}{6 a d^3}-\frac {(4 a c+b) \left (c+d x^2\right )^2 \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{8 a d^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^5*Sqrt[a + b/(c + d*x^2)],x]

[Out]

((8*a^2*c^2 - b*(b + 4*a*c))*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/(16*a^2*d^3) - ((b + 4*a*c)*(c
 + d*x^2)^2*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/(8*a*d^3) + ((c + d*x^2)^3*((b + a*c + a*d*x^2)/(c + d*x^2)
)^(3/2))/(6*a*d^3) + (b*(b^2 + 4*a*b*c + 8*a^2*c^2)*ArcTanh[Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]/Sqrt[a]])/(1
6*a^(5/2)*d^3)

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 393

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d))*x*((a + b*x^n)^(p
 + 1)/(a*b*n*(p + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x]
 /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 466

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(-a)^(m/2 - 1)*(b*c - a*d)*x
*((a + b*x^2)^(p + 1)/(2*b^(m/2 + 1)*(p + 1))), x] + Dist[1/(2*b^(m/2 + 1)*(p + 1)), Int[(a + b*x^2)^(p + 1)*E
xpandToSum[2*b*(p + 1)*x^2*Together[(b^(m/2)*x^(m - 2)*(c + d*x^2) - (-a)^(m/2 - 1)*(b*c - a*d))/(a + b*x^2)]
- (-a)^(m/2 - 1)*(b*c - a*d), x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IGtQ[
m/2, 0] && (IntegerQ[p] || EqQ[m + 2*p + 1, 0])

Rule 474

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[(-(b*c - a*
d)^2)*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b^2*e*n*(p + 1))), x] + Dist[1/(a*b^2*n*(p + 1)), Int[(e*x)^m*(a +
 b*x^n)^(p + 1)*Simp[(b*c - a*d)^2*(m + 1) + b^2*c^2*n*(p + 1) + a*b*d^2*n*(p + 1)*x^n, x], x], x] /; FreeQ[{a
, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1]

Rule 1980

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_Symbol] :> With[{q = Denominator[p]}
, Dist[q*e*(b*c - a*d), Subst[Int[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a
+ b*x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] && IntegerQ[m]

Rule 1981

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Dist[1/n, Sub
st[Int[x^(Simplify[(m + 1)/n] - 1)*(e*((a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n,
 p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1985

Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]

Rubi steps

\begin {align*} \int x^5 \sqrt {a+\frac {b}{c+d x^2}} \, dx &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {x^5 \sqrt {b+a \left (c+d x^2\right )}}{\sqrt {c+d x^2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {x^5 \sqrt {b+a c+a d x^2}}{\sqrt {c+d x^2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {x^2 \sqrt {b+a c+a d x}}{\sqrt {c+d x}} \, dx,x,x^2\right )}{2 \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {x^2 \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{6 a d^2}+\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {\sqrt {b+a c+a d x} \left (-c (b+a c)-\frac {1}{2} (3 b+8 a c) d x\right )}{\sqrt {c+d x}} \, dx,x,x^2\right )}{6 a d^2 \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {(3 b+8 a c) \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{24 a^2 d^3}+\frac {x^2 \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{6 a d^2}+\frac {\left (\left (-2 a c (b+a c) d^2+\frac {1}{2} (3 b+8 a c) d \left (\frac {3 a c d}{2}+\frac {1}{2} (b+a c) d\right )\right ) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {\sqrt {b+a c+a d x}}{\sqrt {c+d x}} \, dx,x,x^2\right )}{12 a^2 d^4 \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (b^2+4 a b c+8 a^2 c^2\right ) \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{16 a^2 d^3}-\frac {(3 b+8 a c) \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{24 a^2 d^3}+\frac {x^2 \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{6 a d^2}+\frac {\left (b \left (-2 a c (b+a c) d^2+\frac {1}{2} (3 b+8 a c) d \left (\frac {3 a c d}{2}+\frac {1}{2} (b+a c) d\right )\right ) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c+d x} \sqrt {b+a c+a d x}} \, dx,x,x^2\right )}{24 a^2 d^4 \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (b^2+4 a b c+8 a^2 c^2\right ) \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{16 a^2 d^3}-\frac {(3 b+8 a c) \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{24 a^2 d^3}+\frac {x^2 \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{6 a d^2}+\frac {\left (b \left (-2 a c (b+a c) d^2+\frac {1}{2} (3 b+8 a c) d \left (\frac {3 a c d}{2}+\frac {1}{2} (b+a c) d\right )\right ) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {b+a x^2}} \, dx,x,\sqrt {c+d x^2}\right )}{12 a^2 d^5 \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (b^2+4 a b c+8 a^2 c^2\right ) \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{16 a^2 d^3}-\frac {(3 b+8 a c) \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{24 a^2 d^3}+\frac {x^2 \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{6 a d^2}+\frac {\left (b \left (-2 a c (b+a c) d^2+\frac {1}{2} (3 b+8 a c) d \left (\frac {3 a c d}{2}+\frac {1}{2} (b+a c) d\right )\right ) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {\sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{12 a^2 d^5 \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (b^2+4 a b c+8 a^2 c^2\right ) \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{16 a^2 d^3}-\frac {(3 b+8 a c) \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{24 a^2 d^3}+\frac {x^2 \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{6 a d^2}+\frac {b \left (b^2+4 a b c+8 a^2 c^2\right ) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{16 a^{5/2} d^3 \sqrt {b+a \left (c+d x^2\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.24, size = 145, normalized size = 0.67 \begin {gather*} \frac {\sqrt {a} \left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \left (-3 b^2+2 a b \left (-5 c+d x^2\right )+8 a^2 \left (c^2-c d x^2+d^2 x^4\right )\right )+3 b \left (b^2+4 a b c+8 a^2 c^2\right ) \tanh ^{-1}\left (\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {a}}\right )}{48 a^{5/2} d^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^5*Sqrt[a + b/(c + d*x^2)],x]

[Out]

(Sqrt[a]*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*(-3*b^2 + 2*a*b*(-5*c + d*x^2) + 8*a^2*(c^2 - c*d*x
^2 + d^2*x^4)) + 3*b*(b^2 + 4*a*b*c + 8*a^2*c^2)*ArcTanh[Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]/Sqrt[a]])/(48*a
^(5/2)*d^3)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(532\) vs. \(2(196)=392\).
time = 0.09, size = 533, normalized size = 2.47

method result size
risch \(\frac {\left (8 d^{2} a^{2} x^{4}-8 a^{2} c d \,x^{2}+2 a b d \,x^{2}+8 a^{2} c^{2}-10 a b c -3 b^{2}\right ) \left (d \,x^{2}+c \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{48 d^{3} a^{2}}+\frac {\left (\frac {b \ln \left (\frac {a c d +\frac {1}{2} b d +a \,d^{2} x^{2}}{\sqrt {a \,d^{2}}}+\sqrt {c^{2} a +b c +\left (2 a c d +b d \right ) x^{2}+a \,d^{2} x^{4}}\right ) c^{2}}{4 d^{2} \sqrt {a \,d^{2}}}+\frac {b^{2} \ln \left (\frac {a c d +\frac {1}{2} b d +a \,d^{2} x^{2}}{\sqrt {a \,d^{2}}}+\sqrt {c^{2} a +b c +\left (2 a c d +b d \right ) x^{2}+a \,d^{2} x^{4}}\right ) c}{8 d^{2} a \sqrt {a \,d^{2}}}+\frac {b^{3} \ln \left (\frac {a c d +\frac {1}{2} b d +a \,d^{2} x^{2}}{\sqrt {a \,d^{2}}}+\sqrt {c^{2} a +b c +\left (2 a c d +b d \right ) x^{2}+a \,d^{2} x^{4}}\right )}{32 d^{2} a^{2} \sqrt {a \,d^{2}}}\right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}{a d \,x^{2}+a c +b}\) \(377\)
default \(\frac {\sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (-48 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, x^{2} c \,a^{2} d \sqrt {a \,d^{2}}-12 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, x^{2} b a d \sqrt {a \,d^{2}}+24 \ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) a^{2} b \,c^{2} d +12 \ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) b^{2} c a d +16 \left (a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c \right )^{\frac {3}{2}} a \sqrt {a \,d^{2}}-36 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, c b a \sqrt {a \,d^{2}}+3 \ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) b^{3} d -6 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, b^{2} \sqrt {a \,d^{2}}\right )}{96 d^{3} \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, a^{2} \sqrt {a \,d^{2}}}\) \(533\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(a+b/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/96*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)*(d*x^2+c)/d^3*(-48*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*x^2*
c*a^2*d*(a*d^2)^(1/2)-12*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*x^2*b*a*d*(a*d^2)^(1/2)+24*ln(1/2*(2*
a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a^2*b*c^
2*d+12*ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2
)^(1/2))*b^2*c*a*d+16*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(3/2)*a*(a*d^2)^(1/2)-36*(a*d^2*x^4+2*a*c*d*x^
2+b*d*x^2+a*c^2+b*c)^(1/2)*c*b*a*(a*d^2)^(1/2)+3*ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+
a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*b^3*d-6*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*b^2
*(a*d^2)^(1/2))/((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)/a^2/(a*d^2)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.51, size = 328, normalized size = 1.52 \begin {gather*} -\frac {3 \, {\left (8 \, a^{2} b c^{2} - 4 \, a b^{2} c - b^{3}\right )} \left (\frac {a d x^{2} + a c + b}{d x^{2} + c}\right )^{\frac {5}{2}} - 8 \, {\left (6 \, a^{3} b c^{2} - a b^{3}\right )} \left (\frac {a d x^{2} + a c + b}{d x^{2} + c}\right )^{\frac {3}{2}} + 3 \, {\left (8 \, a^{4} b c^{2} + 4 \, a^{3} b^{2} c + a^{2} b^{3}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{48 \, {\left (a^{5} d^{3} - \frac {3 \, {\left (a d x^{2} + a c + b\right )} a^{4} d^{3}}{d x^{2} + c} + \frac {3 \, {\left (a d x^{2} + a c + b\right )}^{2} a^{3} d^{3}}{{\left (d x^{2} + c\right )}^{2}} - \frac {{\left (a d x^{2} + a c + b\right )}^{3} a^{2} d^{3}}{{\left (d x^{2} + c\right )}^{3}}\right )}} - \frac {{\left (8 \, a^{2} c^{2} + 4 \, a b c + b^{2}\right )} b \log \left (-\frac {\sqrt {a} - \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{\sqrt {a} + \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}\right )}{32 \, a^{\frac {5}{2}} d^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

-1/48*(3*(8*a^2*b*c^2 - 4*a*b^2*c - b^3)*((a*d*x^2 + a*c + b)/(d*x^2 + c))^(5/2) - 8*(6*a^3*b*c^2 - a*b^3)*((a
*d*x^2 + a*c + b)/(d*x^2 + c))^(3/2) + 3*(8*a^4*b*c^2 + 4*a^3*b^2*c + a^2*b^3)*sqrt((a*d*x^2 + a*c + b)/(d*x^2
 + c)))/(a^5*d^3 - 3*(a*d*x^2 + a*c + b)*a^4*d^3/(d*x^2 + c) + 3*(a*d*x^2 + a*c + b)^2*a^3*d^3/(d*x^2 + c)^2 -
 (a*d*x^2 + a*c + b)^3*a^2*d^3/(d*x^2 + c)^3) - 1/32*(8*a^2*c^2 + 4*a*b*c + b^2)*b*log(-(sqrt(a) - sqrt((a*d*x
^2 + a*c + b)/(d*x^2 + c)))/(sqrt(a) + sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))))/(a^(5/2)*d^3)

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 423, normalized size = 1.96 \begin {gather*} \left [\frac {3 \, {\left (8 \, a^{2} b c^{2} + 4 \, a b^{2} c + b^{3}\right )} \sqrt {a} \log \left (8 \, a^{2} d^{2} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (2 \, a^{2} c + a b\right )} d x^{2} + 8 \, a b c + b^{2} + 4 \, {\left (2 \, a d^{2} x^{4} + {\left (4 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + b c\right )} \sqrt {a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}\right ) + 4 \, {\left (8 \, a^{3} d^{3} x^{6} + 2 \, a^{2} b d^{2} x^{4} + 8 \, a^{3} c^{3} - 10 \, a^{2} b c^{2} - 3 \, a b^{2} c - {\left (8 \, a^{2} b c + 3 \, a b^{2}\right )} d x^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{192 \, a^{3} d^{3}}, -\frac {3 \, {\left (8 \, a^{2} b c^{2} + 4 \, a b^{2} c + b^{3}\right )} \sqrt {-a} \arctan \left (\frac {{\left (2 \, a d x^{2} + 2 \, a c + b\right )} \sqrt {-a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} d x^{2} + a^{2} c + a b\right )}}\right ) - 2 \, {\left (8 \, a^{3} d^{3} x^{6} + 2 \, a^{2} b d^{2} x^{4} + 8 \, a^{3} c^{3} - 10 \, a^{2} b c^{2} - 3 \, a b^{2} c - {\left (8 \, a^{2} b c + 3 \, a b^{2}\right )} d x^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{96 \, a^{3} d^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

[1/192*(3*(8*a^2*b*c^2 + 4*a*b^2*c + b^3)*sqrt(a)*log(8*a^2*d^2*x^4 + 8*a^2*c^2 + 8*(2*a^2*c + a*b)*d*x^2 + 8*
a*b*c + b^2 + 4*(2*a*d^2*x^4 + (4*a*c + b)*d*x^2 + 2*a*c^2 + b*c)*sqrt(a)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)
)) + 4*(8*a^3*d^3*x^6 + 2*a^2*b*d^2*x^4 + 8*a^3*c^3 - 10*a^2*b*c^2 - 3*a*b^2*c - (8*a^2*b*c + 3*a*b^2)*d*x^2)*
sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(a^3*d^3), -1/96*(3*(8*a^2*b*c^2 + 4*a*b^2*c + b^3)*sqrt(-a)*arctan(1/2
*(2*a*d*x^2 + 2*a*c + b)*sqrt(-a)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a^2*d*x^2 + a^2*c + a*b)) - 2*(8*a^3*
d^3*x^6 + 2*a^2*b*d^2*x^4 + 8*a^3*c^3 - 10*a^2*b*c^2 - 3*a*b^2*c - (8*a^2*b*c + 3*a*b^2)*d*x^2)*sqrt((a*d*x^2
+ a*c + b)/(d*x^2 + c)))/(a^3*d^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{5} \sqrt {\frac {a c + a d x^{2} + b}{c + d x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(a+b/(d*x**2+c))**(1/2),x)

[Out]

Integral(x**5*sqrt((a*c + a*d*x**2 + b)/(c + d*x**2)), x)

________________________________________________________________________________________

Giac [A]
time = 4.23, size = 219, normalized size = 1.01 \begin {gather*} \frac {1}{96} \, {\left (2 \, \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c} {\left (2 \, x^{2} {\left (\frac {4 \, x^{2}}{d} - \frac {4 \, a^{2} c d^{3} - a b d^{3}}{a^{2} d^{5}}\right )} + \frac {8 \, a^{2} c^{2} d^{2} - 10 \, a b c d^{2} - 3 \, b^{2} d^{2}}{a^{2} d^{5}}\right )} - \frac {3 \, {\left (8 \, a^{2} b c^{2} + 4 \, a b^{2} c + b^{3}\right )} \log \left ({\left | -2 \, a c d - 2 \, {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )} \sqrt {a} {\left | d \right |} - b d \right |}\right )}{a^{\frac {5}{2}} d^{2} {\left | d \right |}}\right )} \mathrm {sgn}\left (d x^{2} + c\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

1/96*(2*sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c)*(2*x^2*(4*x^2/d - (4*a^2*c*d^3 - a*b*d^3)/(a^2*d
^5)) + (8*a^2*c^2*d^2 - 10*a*b*c*d^2 - 3*b^2*d^2)/(a^2*d^5)) - 3*(8*a^2*b*c^2 + 4*a*b^2*c + b^3)*log(abs(-2*a*
c*d - 2*(sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))*sqrt(a)*abs(d) - b*d))/(a^(5
/2)*d^2*abs(d)))*sgn(d*x^2 + c)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x^5\,\sqrt {a+\frac {b}{d\,x^2+c}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(a + b/(c + d*x^2))^(1/2),x)

[Out]

int(x^5*(a + b/(c + d*x^2))^(1/2), x)

________________________________________________________________________________________