3.4.28 \(\int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^2} \, dx\) [328]

Optimal. Leaf size=265 \[ \frac {d x \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{c}-\frac {\left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{c x}-\frac {\sqrt {d} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{\sqrt {c} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}}+\frac {a \sqrt {c} \sqrt {d} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{(b+a c) \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}} \]

[Out]

d*x*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/c-(d*x^2+c)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/c/x-(1/(1+d*x^2/c))^(1/2)*
(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(b/(a*c+b))^(1/2))*d^(1/2)*((a*d*x^2+a*c+b)/(d
*x^2+c))^(1/2)/c^(1/2)/(c*(a*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)+a*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*E
llipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(b/(a*c+b))^(1/2))*c^(1/2)*d^(1/2)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1
/2)/(a*c+b)/(c*(a*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 265, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {1985, 1986, 486, 21, 433, 429, 506, 422} \begin {gather*} \frac {a \sqrt {c} \sqrt {d} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{(a c+b) \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}-\frac {\sqrt {d} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{\sqrt {c} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}+\frac {d x \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{c}-\frac {\left (c+d x^2\right ) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{c x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b/(c + d*x^2)]/x^2,x]

[Out]

(d*x*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/c - ((c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/(c*x) - (S
qrt[d]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(Sqrt[c]*Sqr
t[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]) + (a*Sqrt[c]*Sqrt[d]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]
*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/((b + a*c)*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c +
d*x^2))])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 433

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[a, Int[1/(Sqrt[a + b*x^2]*Sqrt[c +
d*x^2]), x], x] + Dist[b, Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[
d/c] && PosQ[b/a]

Rule 486

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 1985

Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^2} \, dx &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {b+a \left (c+d x^2\right )}}{x^2 \sqrt {c+d x^2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {b+a c+a d x^2}}{x^2 \sqrt {c+d x^2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {\left (c+d x^2\right ) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{c x \sqrt {b+a \left (c+d x^2\right )}}+\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {a c d+a d^2 x^2}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{c \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {\left (c+d x^2\right ) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{c x \sqrt {b+a \left (c+d x^2\right )}}+\frac {\left (a d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {c+d x^2}}{\sqrt {b+a c+a d x^2}} \, dx}{c \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {\left (c+d x^2\right ) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{c x \sqrt {b+a \left (c+d x^2\right )}}+\frac {\left (a d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {1}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}+\frac {\left (a d^2 \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {x^2}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{c \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {d x \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{c \sqrt {b+a \left (c+d x^2\right )}}-\frac {\left (c+d x^2\right ) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{c x \sqrt {b+a \left (c+d x^2\right )}}+\frac {a \sqrt {c} \sqrt {d} \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{(b+a c) \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {b+a \left (c+d x^2\right )}}-\frac {\left (d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {b+a c+a d x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {d x \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{c \sqrt {b+a \left (c+d x^2\right )}}-\frac {\left (c+d x^2\right ) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{c x \sqrt {b+a \left (c+d x^2\right )}}-\frac {\sqrt {d} \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{\sqrt {c} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {b+a \left (c+d x^2\right )}}+\frac {a \sqrt {c} \sqrt {d} \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{(b+a c) \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {b+a \left (c+d x^2\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.40, size = 141, normalized size = 0.53 \begin {gather*} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \left (-\frac {1}{x}-\frac {d x}{c}-\frac {i a d \sqrt {\frac {b+a c+a d x^2}{b+a c}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {a d}{b+a c}} x\right )|1+\frac {b}{a c}\right )}{\sqrt {\frac {a d}{b+a c}} \left (b+a \left (c+d x^2\right )\right )}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b/(c + d*x^2)]/x^2,x]

[Out]

Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*(-x^(-1) - (d*x)/c - (I*a*d*Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*Sqrt[1 +
 (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[(a*d)/(b + a*c)]*x], 1 + b/(a*c)])/(Sqrt[(a*d)/(b + a*c)]*(b + a*(c + d*x
^2))))

________________________________________________________________________________________

Maple [A]
time = 0.05, size = 272, normalized size = 1.03

method result size
default \(-\frac {\left (\sqrt {-\frac {a d}{a c +b}}\, a \,d^{2} x^{4}-a d c \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, x \EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right )+2 \sqrt {-\frac {a d}{a c +b}}\, a c d \,x^{2}+\sqrt {-\frac {a d}{a c +b}}\, b d \,x^{2}+\sqrt {-\frac {a d}{a c +b}}\, a \,c^{2}+\sqrt {-\frac {a d}{a c +b}}\, b c \right ) \left (d \,x^{2}+c \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{\sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {-\frac {a d}{a c +b}}\, x c \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}\) \(272\)
risch \(-\frac {\left (d \,x^{2}+c \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{c x}+\frac {a d \left (-\frac {2 d \left (c^{2} a +b c \right ) \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )-\EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \left (2 a c d +2 b d \right )}+\frac {c \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}\right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}{c \left (a d \,x^{2}+a c +b \right )}\) \(400\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/(d*x^2+c))^(1/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-((-a*d/(a*c+b))^(1/2)*a*d^2*x^4-a*d*c*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*x*EllipticE(x*(-a*d
/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))+2*(-a*d/(a*c+b))^(1/2)*a*c*d*x^2+(-a*d/(a*c+b))^(1/2)*b*d*x^2+(-a*d/(a*c+
b))^(1/2)*a*c^2+(-a*d/(a*c+b))^(1/2)*b*c)*(d*x^2+c)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/(a*d^2*x^4+2*a*c*d*x^2+b
*d*x^2+a*c^2+b*c)^(1/2)/(-a*d/(a*c+b))^(1/2)/x/c/((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(a + b/(d*x^2 + c))/x^2, x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x^2,x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\frac {a c + a d x^{2} + b}{c + d x^{2}}}}{x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x**2+c))**(1/2)/x**2,x)

[Out]

Integral(sqrt((a*c + a*d*x**2 + b)/(c + d*x**2))/x**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(a + b/(d*x^2 + c))/x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {a+\frac {b}{d\,x^2+c}}}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/(c + d*x^2))^(1/2)/x^2,x)

[Out]

int((a + b/(c + d*x^2))^(1/2)/x^2, x)

________________________________________________________________________________________