3.4.35 \(\int \frac {(a+\frac {b}{c+d x^2})^{3/2}}{x^3} \, dx\) [335]

Optimal. Leaf size=138 \[ -\frac {3 b d \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{2 c^2}-\frac {\left (c+d x^2\right ) \left (\frac {b+a c+a d x^2}{c+d x^2}\right )^{3/2}}{2 c x^2}+\frac {3 b \sqrt {b+a c} d \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {b+a c}}\right )}{2 c^{5/2}} \]

[Out]

-1/2*(d*x^2+c)*((a*d*x^2+a*c+b)/(d*x^2+c))^(3/2)/c/x^2+3/2*b*d*arctanh(c^(1/2)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/
2)/(a*c+b)^(1/2))*(a*c+b)^(1/2)/c^(5/2)-3/2*b*d*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/c^2

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {1985, 1981, 1980, 294, 327, 214} \begin {gather*} \frac {3 b d \sqrt {a c+b} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a c+b}}\right )}{2 c^{5/2}}-\frac {3 b d \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{2 c^2}-\frac {\left (c+d x^2\right ) \left (\frac {a c+a d x^2+b}{c+d x^2}\right )^{3/2}}{2 c x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b/(c + d*x^2))^(3/2)/x^3,x]

[Out]

(-3*b*d*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/(2*c^2) - ((c + d*x^2)*((b + a*c + a*d*x^2)/(c + d*x^2))^(3/2))
/(2*c*x^2) + (3*b*Sqrt[b + a*c]*d*ArcTanh[(Sqrt[c]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/Sqrt[b + a*c]])/(2*c
^(5/2))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 1980

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_Symbol] :> With[{q = Denominator[p]}
, Dist[q*e*(b*c - a*d), Subst[Int[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a
+ b*x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] && IntegerQ[m]

Rule 1981

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Dist[1/n, Sub
st[Int[x^(Simplify[(m + 1)/n] - 1)*(e*((a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n,
 p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1985

Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]

Rubi steps

\begin {align*} \int \frac {\left (a+\frac {b}{c+d x^2}\right )^{3/2}}{x^3} \, dx &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\left (b+a \left (c+d x^2\right )\right )^{3/2}}{x^3 \left (c+d x^2\right )^{3/2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\left (b+a c+a d x^2\right )^{3/2}}{x^3 \left (c+d x^2\right )^{3/2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {(b+a c+a d x)^{3/2}}{x^2 (c+d x)^{3/2}} \, dx,x,x^2\right )}{2 \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {\sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{2 c x^2}-\frac {\left (3 b d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {\sqrt {b+a c+a d x}}{x (c+d x)^{3/2}} \, dx,x,x^2\right )}{4 c \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {3 b d \sqrt {a+\frac {b}{c+d x^2}}}{2 c^2}-\frac {\sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{2 c x^2}-\frac {\left (3 b (b+a c) d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {c+d x} \sqrt {b+a c+a d x}} \, dx,x,x^2\right )}{4 c^2 \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {3 b d \sqrt {a+\frac {b}{c+d x^2}}}{2 c^2}-\frac {\sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{2 c x^2}-\frac {\left (3 b (b+a c) d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{-c-(-b-a c) x^2} \, dx,x,\frac {\sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{2 c^2 \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {3 b d \sqrt {a+\frac {b}{c+d x^2}}}{2 c^2}-\frac {\sqrt {a+\frac {b}{c+d x^2}} \left (b+a \left (c+d x^2\right )\right )}{2 c x^2}+\frac {3 b \sqrt {b+a c} d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}} \tanh ^{-1}\left (\frac {\sqrt {b+a c} \sqrt {c+d x^2}}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}\right )}{2 c^{5/2} \sqrt {b+a \left (c+d x^2\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.21, size = 124, normalized size = 0.90 \begin {gather*} -\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \left (a c \left (c+d x^2\right )+b \left (c+3 d x^2\right )\right )}{2 c^2 x^2}+\frac {3 b \sqrt {-b-a c} d \tan ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {-b-a c}}\right )}{2 c^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b/(c + d*x^2))^(3/2)/x^3,x]

[Out]

-1/2*(Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*(a*c*(c + d*x^2) + b*(c + 3*d*x^2)))/(c^2*x^2) + (3*b*Sqrt[-b - a*
c]*d*ArcTan[(Sqrt[c]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/Sqrt[-b - a*c]])/(2*c^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(819\) vs. \(2(118)=236\).
time = 0.11, size = 820, normalized size = 5.94

method result size
risch \(-\frac {\left (a c +b \right ) \left (d \,x^{2}+c \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{2 c^{2} x^{2}}+\frac {\left (\frac {3 b d \ln \left (\frac {2 c^{2} a +2 b c +\left (2 a c d +b d \right ) x^{2}+2 \sqrt {c^{2} a +b c}\, \sqrt {c^{2} a +b c +\left (2 a c d +b d \right ) x^{2}+a \,d^{2} x^{4}}}{x^{2}}\right ) a}{4 c \sqrt {c^{2} a +b c}}+\frac {3 b^{2} d \ln \left (\frac {2 c^{2} a +2 b c +\left (2 a c d +b d \right ) x^{2}+2 \sqrt {c^{2} a +b c}\, \sqrt {c^{2} a +b c +\left (2 a c d +b d \right ) x^{2}+a \,d^{2} x^{4}}}{x^{2}}\right )}{4 c^{2} \sqrt {c^{2} a +b c}}-\frac {b \,d^{2} x^{2} a}{c^{2} \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}-\frac {b d a}{c \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}-\frac {b^{2} d}{c^{2} \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}\right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}{a d \,x^{2}+a c +b}\) \(420\)
default \(-\frac {\sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (-2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, a \,d^{3} x^{6}-3 \ln \left (\frac {2 a c d \,x^{2}+b d \,x^{2}+2 c^{2} a +2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}+2 b c}{x^{2}}\right ) a b \,c^{2} d^{2} x^{4}-6 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, a c \,d^{2} x^{4}-3 \ln \left (\frac {2 a c d \,x^{2}+b d \,x^{2}+2 c^{2} a +2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}+2 b c}{x^{2}}\right ) b^{2} c \,d^{2} x^{4}-2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, b \,d^{2} x^{4}-3 \ln \left (\frac {2 a c d \,x^{2}+b d \,x^{2}+2 c^{2} a +2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}+2 b c}{x^{2}}\right ) a b \,c^{3} d \,x^{2}-4 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, a \,c^{2} d \,x^{2}-3 \ln \left (\frac {2 a c d \,x^{2}+b d \,x^{2}+2 c^{2} a +2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}+2 b c}{x^{2}}\right ) b^{2} c^{2} d \,x^{2}+4 \sqrt {c^{2} a +b c}\, \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, b c d \,x^{2}+2 \sqrt {c^{2} a +b c}\, \left (a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c \right )^{\frac {3}{2}} d \,x^{2}-2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, b c d \,x^{2}+2 \sqrt {c^{2} a +b c}\, \left (a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c \right )^{\frac {3}{2}} c \right )}{4 \sqrt {c^{2} a +b c}\, x^{2} c^{3} \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}\) \(820\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/(d*x^2+c))^(3/2)/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/4*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)*(-2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*a
*d^3*x^6-3*ln((2*a*c*d*x^2+b*d*x^2+2*c^2*a+2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)
+2*b*c)/x^2)*a*b*c^2*d^2*x^4-6*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*a*c*d^2*x^4-3
*ln((2*a*c*d*x^2+b*d*x^2+2*c^2*a+2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)+2*b*c)/x^
2)*b^2*c*d^2*x^4-2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*b*d^2*x^4-3*ln((2*a*c*d*x
^2+b*d*x^2+2*c^2*a+2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)+2*b*c)/x^2)*a*b*c^3*d*x
^2-4*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*a*c^2*d*x^2-3*ln((2*a*c*d*x^2+b*d*x^2+2
*c^2*a+2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)+2*b*c)/x^2)*b^2*c^2*d*x^2+4*(a*c^2+
b*c)^(1/2)*((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)*b*c*d*x^2+2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^
2+b*c)^(3/2)*d*x^2-2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*b*c*d*x^2+2*(a*c^2+b*c)
^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(3/2)*c)/(a*c^2+b*c)^(1/2)/x^2/c^3/((d*x^2+c)*(a*d*x^2+a*c+b)
)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 202, normalized size = 1.46 \begin {gather*} -\frac {{\left (a b c + b^{2}\right )} d \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a c^{3} + b c^{2} - \frac {{\left (a d x^{2} + a c + b\right )} c^{3}}{d x^{2} + c}\right )}} - \frac {b d \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{c^{2}} - \frac {3 \, {\left (a b c + b^{2}\right )} d \log \left (\frac {c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} - \sqrt {{\left (a c + b\right )} c}}{c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} + \sqrt {{\left (a c + b\right )} c}}\right )}{4 \, \sqrt {{\left (a c + b\right )} c} c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(3/2)/x^3,x, algorithm="maxima")

[Out]

-1/2*(a*b*c + b^2)*d*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a*c^3 + b*c^2 - (a*d*x^2 + a*c + b)*c^3/(d*x^2 + c
)) - b*d*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/c^2 - 3/4*(a*b*c + b^2)*d*log((c*sqrt((a*d*x^2 + a*c + b)/(d*x^
2 + c)) - sqrt((a*c + b)*c))/(c*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)) + sqrt((a*c + b)*c)))/(sqrt((a*c + b)*c)
*c^2)

________________________________________________________________________________________

Fricas [A]
time = 0.44, size = 404, normalized size = 2.93 \begin {gather*} \left [\frac {3 \, b d x^{2} \sqrt {\frac {a c + b}{c}} \log \left (\frac {{\left (8 \, a^{2} c^{2} + 8 \, a b c + b^{2}\right )} d^{2} x^{4} + 8 \, a^{2} c^{4} + 16 \, a b c^{3} + 8 \, b^{2} c^{2} + 8 \, {\left (2 \, a^{2} c^{3} + 3 \, a b c^{2} + b^{2} c\right )} d x^{2} + 4 \, {\left ({\left (2 \, a c^{2} + b c\right )} d^{2} x^{4} + 2 \, a c^{4} + 2 \, b c^{3} + {\left (4 \, a c^{3} + 3 \, b c^{2}\right )} d x^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {\frac {a c + b}{c}}}{x^{4}}\right ) - 4 \, {\left ({\left (a c + 3 \, b\right )} d x^{2} + a c^{2} + b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{8 \, c^{2} x^{2}}, -\frac {3 \, b d x^{2} \sqrt {-\frac {a c + b}{c}} \arctan \left (\frac {{\left ({\left (2 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + 2 \, b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {-\frac {a c + b}{c}}}{2 \, {\left (a^{2} c^{2} + {\left (a^{2} c + a b\right )} d x^{2} + 2 \, a b c + b^{2}\right )}}\right ) + 2 \, {\left ({\left (a c + 3 \, b\right )} d x^{2} + a c^{2} + b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{4 \, c^{2} x^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(3/2)/x^3,x, algorithm="fricas")

[Out]

[1/8*(3*b*d*x^2*sqrt((a*c + b)/c)*log(((8*a^2*c^2 + 8*a*b*c + b^2)*d^2*x^4 + 8*a^2*c^4 + 16*a*b*c^3 + 8*b^2*c^
2 + 8*(2*a^2*c^3 + 3*a*b*c^2 + b^2*c)*d*x^2 + 4*((2*a*c^2 + b*c)*d^2*x^4 + 2*a*c^4 + 2*b*c^3 + (4*a*c^3 + 3*b*
c^2)*d*x^2)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))*sqrt((a*c + b)/c))/x^4) - 4*((a*c + 3*b)*d*x^2 + a*c^2 + b*c
)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(c^2*x^2), -1/4*(3*b*d*x^2*sqrt(-(a*c + b)/c)*arctan(1/2*((2*a*c + b)
*d*x^2 + 2*a*c^2 + 2*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))*sqrt(-(a*c + b)/c)/(a^2*c^2 + (a^2*c + a*b)*d*
x^2 + 2*a*b*c + b^2)) + 2*((a*c + 3*b)*d*x^2 + a*c^2 + b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(c^2*x^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\frac {a c + a d x^{2} + b}{c + d x^{2}}\right )^{\frac {3}{2}}}{x^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x**2+c))**(3/2)/x**3,x)

[Out]

Integral(((a*c + a*d*x**2 + b)/(c + d*x**2))**(3/2)/x**3, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(3/2)/x^3,x, algorithm="giac")

[Out]

undef

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+\frac {b}{d\,x^2+c}\right )}^{3/2}}{x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/(c + d*x^2))^(3/2)/x^3,x)

[Out]

int((a + b/(c + d*x^2))^(3/2)/x^3, x)

________________________________________________________________________________________