3.4.39 \(\int x^2 (a+\frac {b}{c+d x^2})^{3/2} \, dx\) [339]

Optimal. Leaf size=331 \[ \frac {(7 b-a c) x \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{3 d}+\frac {4 a x \left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{3 d}-\frac {x \left (b+a c+a d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{d}-\frac {\sqrt {c} (7 b-a c) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 d^{3/2} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}}+\frac {\sqrt {c} (3 b-a c) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 d^{3/2} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}} \]

[Out]

1/3*(-a*c+7*b)*x*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/d+4/3*a*x*(d*x^2+c)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/d-x*(
a*d*x^2+a*c+b)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/d-1/3*(-a*c+7*b)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*Elli
pticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(b/(a*c+b))^(1/2))*c^(1/2)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/d^(3/2)
/(c*(a*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)+1/3*(-a*c+3*b)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(
x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(b/(a*c+b))^(1/2))*c^(1/2)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/d^(3/2)/(c*(a
*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.27, antiderivative size = 331, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {1985, 1986, 478, 542, 545, 429, 506, 422} \begin {gather*} \frac {\sqrt {c} (3 b-a c) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 d^{3/2} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}-\frac {\sqrt {c} (7 b-a c) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 d^{3/2} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}+\frac {4 a x \left (c+d x^2\right ) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{3 d}-\frac {x \left (a c+a d x^2+b\right ) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{d}+\frac {x (7 b-a c) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*(a + b/(c + d*x^2))^(3/2),x]

[Out]

((7*b - a*c)*x*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/(3*d) + (4*a*x*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c +
 d*x^2)])/(3*d) - (x*(b + a*c + a*d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/d - (Sqrt[c]*(7*b - a*c)*Sqrt[
(b + a*c + a*d*x^2)/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(3*d^(3/2)*Sqrt[(c*(b +
a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]) + (Sqrt[c]*(3*b - a*c)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*Ellipti
cF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(3*d^(3/2)*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]
)

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*n*(p + 1))), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 542

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
f*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(n*(p + q + 1) + 1))), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 1985

Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rubi steps

\begin {align*} \int x^2 \left (a+\frac {b}{c+d x^2}\right )^{3/2} \, dx &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {x^2 \left (b+a \left (c+d x^2\right )\right )^{3/2}}{\left (c+d x^2\right )^{3/2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {x^2 \left (b+a c+a d x^2\right )^{3/2}}{\left (c+d x^2\right )^{3/2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {x \left (b+a c+a d x^2\right )^{3/2} \sqrt {a+\frac {b}{c+d x^2}}}{d \sqrt {b+a \left (c+d x^2\right )}}+\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {b+a c+a d x^2} \left (b+a c+4 a d x^2\right )}{\sqrt {c+d x^2}} \, dx}{d \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {4 a x \left (c+d x^2\right ) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{3 d \sqrt {b+a \left (c+d x^2\right )}}-\frac {x \left (b+a c+a d x^2\right )^{3/2} \sqrt {a+\frac {b}{c+d x^2}}}{d \sqrt {b+a \left (c+d x^2\right )}}+\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {(3 b-a c) (b+a c) d+a (7 b-a c) d^2 x^2}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{3 d^2 \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {4 a x \left (c+d x^2\right ) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{3 d \sqrt {b+a \left (c+d x^2\right )}}-\frac {x \left (b+a c+a d x^2\right )^{3/2} \sqrt {a+\frac {b}{c+d x^2}}}{d \sqrt {b+a \left (c+d x^2\right )}}+\frac {\left (a (7 b-a c) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {x^2}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{3 \sqrt {b+a \left (c+d x^2\right )}}+\frac {\left ((3 b-a c) (b+a c) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {1}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{3 d \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {(7 b-a c) x \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{3 d \sqrt {b+a \left (c+d x^2\right )}}+\frac {4 a x \left (c+d x^2\right ) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{3 d \sqrt {b+a \left (c+d x^2\right )}}-\frac {x \left (b+a c+a d x^2\right )^{3/2} \sqrt {a+\frac {b}{c+d x^2}}}{d \sqrt {b+a \left (c+d x^2\right )}}+\frac {\sqrt {c} (3 b-a c) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 d^{3/2} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {b+a \left (c+d x^2\right )}}-\frac {\left (c (7 b-a c) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {b+a c+a d x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 d \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {(7 b-a c) x \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{3 d \sqrt {b+a \left (c+d x^2\right )}}+\frac {4 a x \left (c+d x^2\right ) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}}}{3 d \sqrt {b+a \left (c+d x^2\right )}}-\frac {x \left (b+a c+a d x^2\right )^{3/2} \sqrt {a+\frac {b}{c+d x^2}}}{d \sqrt {b+a \left (c+d x^2\right )}}-\frac {\sqrt {c} (7 b-a c) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 d^{3/2} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {b+a \left (c+d x^2\right )}}+\frac {\sqrt {c} (3 b-a c) \sqrt {b+a c+a d x^2} \sqrt {a+\frac {b}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 d^{3/2} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {b+a \left (c+d x^2\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.53, size = 270, normalized size = 0.82 \begin {gather*} \frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \left (\sqrt {\frac {a d}{b+a c}} x \left (-3 b^2-2 a b \left (c+d x^2\right )+a^2 \left (c+d x^2\right )^2\right )+i a c (-7 b+a c) \sqrt {\frac {b+a c+a d x^2}{b+a c}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {a d}{b+a c}} x\right )|1+\frac {b}{a c}\right )+i b (-3 b+5 a c) \sqrt {\frac {b+a c+a d x^2}{b+a c}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {a d}{b+a c}} x\right )|1+\frac {b}{a c}\right )\right )}{3 d \sqrt {\frac {a d}{b+a c}} \left (b+a \left (c+d x^2\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*(a + b/(c + d*x^2))^(3/2),x]

[Out]

(Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*(Sqrt[(a*d)/(b + a*c)]*x*(-3*b^2 - 2*a*b*(c + d*x^2) + a^2*(c + d*x^2)^
2) + I*a*c*(-7*b + a*c)*Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[(a*d)
/(b + a*c)]*x], 1 + b/(a*c)] + I*b*(-3*b + 5*a*c)*Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*Sqrt[1 + (d*x^2)/c]*Elli
pticF[I*ArcSinh[Sqrt[(a*d)/(b + a*c)]*x], 1 + b/(a*c)]))/(3*d*Sqrt[(a*d)/(b + a*c)]*(b + a*(c + d*x^2)))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(819\) vs. \(2(371)=742\).
time = 0.08, size = 820, normalized size = 2.48

method result size
default \(\frac {\left (\sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \sqrt {-\frac {a d}{a c +b}}\, a^{2} d^{2} x^{5}+2 \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \sqrt {-\frac {a d}{a c +b}}\, a^{2} c d \,x^{3}+\sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \sqrt {-\frac {a d}{a c +b}}\, a b d \,x^{3}-\sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a^{2} c^{2}-3 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {-\frac {a d}{a c +b}}\, a b d \,x^{3}+\sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \sqrt {-\frac {a d}{a c +b}}\, a^{2} c^{2} x -5 \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a b c +7 \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a b c +\sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \sqrt {-\frac {a d}{a c +b}}\, a b c x +3 \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) b^{2}-3 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {-\frac {a d}{a c +b}}\, a b c x -3 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {-\frac {a d}{a c +b}}\, b^{2} x \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{3 d \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {-\frac {a d}{a c +b}}\, \left (a d \,x^{2}+a c +b \right )}\) \(820\)
risch \(\frac {a x \left (d \,x^{2}+c \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{3 d}-\frac {\left (-\frac {2 a^{2} c d \left (c^{2} a +b c \right ) \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )-\EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \left (2 a c d +2 b d \right )}+\frac {8 a b d \left (c^{2} a +b c \right ) \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )-\EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \left (2 a c d +2 b d \right )}+\frac {a^{2} c^{2} \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}+\frac {a b c \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}-\frac {3 b^{2} \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}+3 b^{2} c \left (\frac {\left (a \,d^{2} x^{2}+a c d +b d \right ) x}{c b d \sqrt {\left (x^{2}+\frac {c}{d}\right ) \left (a \,d^{2} x^{2}+a c d +b d \right )}}+\frac {\left (\frac {1}{c}-\frac {a c d +b d}{c b d}\right ) \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}+\frac {2 a d \left (c^{2} a +b c \right ) \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )-\EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )\right )}{b c \sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \left (2 a c d +2 b d \right )}\right )\right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}{3 d \left (a d \,x^{2}+a c +b \right )}\) \(1213\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b/(d*x^2+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/3*(((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)*(-a*d/(a*c+b))^(1/2)*a^2*d^2*x^5+2*((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)*(-
a*d/(a*c+b))^(1/2)*a^2*c*d*x^3+((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)*(-a*d/(a*c+b))^(1/2)*a*b*d*x^3-((d*x^2+c)*(a*
d*x^2+a*c+b))^(1/2)*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-a*d/(a*c+b))^(1/2),((a*c
+b)/a/c)^(1/2))*a^2*c^2-3*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(-a*d/(a*c+b))^(1/2)*a*b*d*x^3+((d*x
^2+c)*(a*d*x^2+a*c+b))^(1/2)*(-a*d/(a*c+b))^(1/2)*a^2*c^2*x-5*((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)*((a*d*x^2+a*c+
b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))*a*b*c+7*((d*x^2+c)
*(a*d*x^2+a*c+b))^(1/2)*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-a*d/(a*c+b))^(1/2),(
(a*c+b)/a/c)^(1/2))*a*b*c+((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)*(-a*d/(a*c+b))^(1/2)*a*b*c*x+3*((d*x^2+c)*(a*d*x^2
+a*c+b))^(1/2)*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a
/c)^(1/2))*b^2-3*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(-a*d/(a*c+b))^(1/2)*a*b*c*x-3*(a*d^2*x^4+2*a
*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(-a*d/(a*c+b))^(1/2)*b^2*x)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/d/(a*d^2*x^4+2
*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)/(-a*d/(a*c+b))^(1/2)/(a*d*x^2+a*c+b)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b/(d*x^2+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((a + b/(d*x^2 + c))^(3/2)*x^2, x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b/(d*x^2+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \left (\frac {a c + a d x^{2} + b}{c + d x^{2}}\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b/(d*x**2+c))**(3/2),x)

[Out]

Integral(x**2*((a*c + a*d*x**2 + b)/(c + d*x**2))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b/(d*x^2+c))^(3/2),x, algorithm="giac")

[Out]

integrate((a + b/(d*x^2 + c))^(3/2)*x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x^2\,{\left (a+\frac {b}{d\,x^2+c}\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + b/(c + d*x^2))^(3/2),x)

[Out]

int(x^2*(a + b/(c + d*x^2))^(3/2), x)

________________________________________________________________________________________