3.4.46 \(\int \frac {x}{\sqrt {a+\frac {b}{c+d x^2}}} \, dx\) [346]

Optimal. Leaf size=72 \[ \frac {\left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 a d}-\frac {b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{c+d x^2}}}{\sqrt {a}}\right )}{2 a^{3/2} d} \]

[Out]

-1/2*b*arctanh((a+b/(d*x^2+c))^(1/2)/a^(1/2))/a^(3/2)/d+1/2*(d*x^2+c)*(a+b/(d*x^2+c))^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {1605, 248, 44, 65, 214} \begin {gather*} \frac {\left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 a d}-\frac {b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{c+d x^2}}}{\sqrt {a}}\right )}{2 a^{3/2} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/Sqrt[a + b/(c + d*x^2)],x]

[Out]

((c + d*x^2)*Sqrt[a + b/(c + d*x^2)])/(2*a*d) - (b*ArcTanh[Sqrt[a + b/(c + d*x^2)]/Sqrt[a]])/(2*a^(3/2)*d)

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 248

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^2, x], x, 1/x] /; FreeQ[{a, b, p},
x] && ILtQ[n, 0]

Rule 1605

Int[((a_.) + (b_.)*(Pq_)^(n_.))^(p_.)*(Qr_), x_Symbol] :> With[{q = Expon[Pq, x], r = Expon[Qr, x]}, Dist[Coef
f[Qr, x, r]/(q*Coeff[Pq, x, q]), Subst[Int[(a + b*x^n)^p, x], x, Pq], x] /; EqQ[r, q - 1] && EqQ[Coeff[Qr, x,
r]*D[Pq, x], q*Coeff[Pq, x, q]*Qr]] /; FreeQ[{a, b, n, p}, x] && PolyQ[Pq, x] && PolyQ[Qr, x]

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {a+\frac {b}{c+d x^2}}} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b}{x}}} \, dx,x,c+d x^2\right )}{2 d}\\ &=-\frac {\text {Subst}\left (\int \frac {1}{x^2 \sqrt {a+b x}} \, dx,x,\frac {1}{c+d x^2}\right )}{2 d}\\ &=\frac {\left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 a d}+\frac {b \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\frac {1}{c+d x^2}\right )}{4 a d}\\ &=\frac {\left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 a d}+\frac {\text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+\frac {b}{c+d x^2}}\right )}{2 a d}\\ &=\frac {\left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 a d}-\frac {b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{c+d x^2}}}{\sqrt {a}}\right )}{2 a^{3/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.11, size = 88, normalized size = 1.22 \begin {gather*} \frac {\left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{2 a d}-\frac {b \tanh ^{-1}\left (\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {a}}\right )}{2 a^{3/2} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/Sqrt[a + b/(c + d*x^2)],x]

[Out]

((c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/(2*a*d) - (b*ArcTanh[Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]
/Sqrt[a]])/(2*a^(3/2)*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(183\) vs. \(2(60)=120\).
time = 0.24, size = 184, normalized size = 2.56

method result size
derivativedivides \(\frac {\sqrt {\frac {a \left (d \,x^{2}+c \right )+b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (2 \sqrt {\left (d \,x^{2}+c \right ) \left (a \left (d \,x^{2}+c \right )+b \right )}\, \sqrt {a}-b \ln \left (\frac {2 \sqrt {\left (d \,x^{2}+c \right ) \left (a \left (d \,x^{2}+c \right )+b \right )}\, \sqrt {a}+2 a \left (d \,x^{2}+c \right )+b}{2 \sqrt {a}}\right )\right )}{4 d \sqrt {\left (d \,x^{2}+c \right ) \left (a \left (d \,x^{2}+c \right )+b \right )}\, a^{\frac {3}{2}}}\) \(134\)
risch \(\frac {a d \,x^{2}+a c +b}{2 d a \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}-\frac {\ln \left (\frac {a c d +\frac {1}{2} b d +a \,d^{2} x^{2}}{\sqrt {a \,d^{2}}}+\sqrt {c^{2} a +b c +\left (2 a c d +b d \right ) x^{2}+a \,d^{2} x^{4}}\right ) b \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}{4 a \sqrt {a \,d^{2}}\, \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right )}\) \(169\)
default \(\frac {\sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (-\ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) b d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}\right )}{4 \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, a d \sqrt {a \,d^{2}}}\) \(184\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a+b/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/4*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)*(d*x^2+c)*(-ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2
+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*b*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d
^2)^(1/2))/((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)/a/d/(a*d^2)^(1/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 129 vs. \(2 (60) = 120\).
time = 0.51, size = 129, normalized size = 1.79 \begin {gather*} -\frac {b \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} d - \frac {{\left (a d x^{2} + a c + b\right )} a d}{d x^{2} + c}\right )}} + \frac {b \log \left (-\frac {\sqrt {a} - \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{\sqrt {a} + \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}\right )}{4 \, a^{\frac {3}{2}} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

-1/2*b*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a^2*d - (a*d*x^2 + a*c + b)*a*d/(d*x^2 + c)) + 1/4*b*log(-(sqrt(
a) - sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(sqrt(a) + sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))))/(a^(3/2)*d)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 267, normalized size = 3.71 \begin {gather*} \left [\frac {\sqrt {a} b \log \left (8 \, a^{2} d^{2} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (2 \, a^{2} c + a b\right )} d x^{2} + 8 \, a b c + b^{2} - 4 \, {\left (2 \, a d^{2} x^{4} + {\left (4 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + b c\right )} \sqrt {a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}\right ) + 4 \, {\left (a d x^{2} + a c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{8 \, a^{2} d}, \frac {\sqrt {-a} b \arctan \left (\frac {{\left (2 \, a d x^{2} + 2 \, a c + b\right )} \sqrt {-a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} d x^{2} + a^{2} c + a b\right )}}\right ) + 2 \, {\left (a d x^{2} + a c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{4 \, a^{2} d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(a)*b*log(8*a^2*d^2*x^4 + 8*a^2*c^2 + 8*(2*a^2*c + a*b)*d*x^2 + 8*a*b*c + b^2 - 4*(2*a*d^2*x^4 + (4*
a*c + b)*d*x^2 + 2*a*c^2 + b*c)*sqrt(a)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))) + 4*(a*d*x^2 + a*c)*sqrt((a*d*x
^2 + a*c + b)/(d*x^2 + c)))/(a^2*d), 1/4*(sqrt(-a)*b*arctan(1/2*(2*a*d*x^2 + 2*a*c + b)*sqrt(-a)*sqrt((a*d*x^2
 + a*c + b)/(d*x^2 + c))/(a^2*d*x^2 + a^2*c + a*b)) + 2*(a*d*x^2 + a*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))
/(a^2*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{\sqrt {\frac {a c + a d x^{2} + b}{c + d x^{2}}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/(d*x**2+c))**(1/2),x)

[Out]

Integral(x/sqrt((a*c + a*d*x**2 + b)/(c + d*x**2)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 129 vs. \(2 (60) = 120\).
time = 4.82, size = 129, normalized size = 1.79 \begin {gather*} \frac {\frac {b \log \left ({\left | -2 \, a c d - 2 \, {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )} \sqrt {a} {\left | d \right |} - b d \right |}\right )}{a^{\frac {3}{2}} {\left | d \right |}} + \frac {2 \, \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}}{a d}}{4 \, \mathrm {sgn}\left (d x^{2} + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

1/4*(b*log(abs(-2*a*c*d - 2*(sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))*sqrt(a)*
abs(d) - b*d))/(a^(3/2)*abs(d)) + 2*sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c)/(a*d))/sgn(d*x^2 + c
)

________________________________________________________________________________________

Mupad [B]
time = 3.34, size = 111, normalized size = 1.54 \begin {gather*} \frac {\sqrt {\frac {a\,\left (d\,x^2+c\right )}{b}+1}\,\left (d\,x^2+c\right )\,\left (\frac {3\,\sqrt {b}\,\sqrt {b+a\,\left (d\,x^2+c\right )}}{2\,a\,\left (d\,x^2+c\right )}+\frac {b^{3/2}\,\mathrm {asin}\left (\frac {\sqrt {a}\,\sqrt {d\,x^2+c}\,1{}\mathrm {i}}{\sqrt {b}}\right )\,3{}\mathrm {i}}{2\,a^{3/2}\,{\left (d\,x^2+c\right )}^{3/2}}\right )}{3\,d\,\sqrt {a+\frac {b}{d\,x^2+c}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a + b/(c + d*x^2))^(1/2),x)

[Out]

(((a*(c + d*x^2))/b + 1)^(1/2)*(c + d*x^2)*((b^(3/2)*asin((a^(1/2)*(c + d*x^2)^(1/2)*1i)/b^(1/2))*3i)/(2*a^(3/
2)*(c + d*x^2)^(3/2)) + (3*b^(1/2)*(b + a*(c + d*x^2))^(1/2))/(2*a*(c + d*x^2))))/(3*d*(a + b/(c + d*x^2))^(1/
2))

________________________________________________________________________________________