3.4.51 \(\int \frac {x^2}{\sqrt {a+\frac {b}{c+d x^2}}} \, dx\) [351]

Optimal. Leaf size=354 \[ \frac {x \left (b+a c+a d x^2\right )}{3 a d \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}-\frac {(2 b+a c) x \left (b+a c+a d x^2\right )}{3 a^2 d \left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}+\frac {\sqrt {c} (2 b+a c) \left (b+a c+a d x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 a^2 d^{3/2} \left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}}-\frac {c^{3/2} \left (b+a c+a d x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 a d^{3/2} \left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}} \]

[Out]

1/3*x*(a*d*x^2+a*c+b)/a/d/((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)-1/3*(a*c+2*b)*x*(a*d*x^2+a*c+b)/a^2/d/(d*x^2+c)/((
a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)-1/3*c^(3/2)*(a*d*x^2+a*c+b)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(
x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(b/(a*c+b))^(1/2))/a/d^(3/2)/(d*x^2+c)/((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/(
c*(a*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)+1/3*(a*c+2*b)*(a*d*x^2+a*c+b)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/
2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(b/(a*c+b))^(1/2))*c^(1/2)/a^2/d^(3/2)/(d*x^2+c)/((a*d*x^2+a*
c+b)/(d*x^2+c))^(1/2)/(c*(a*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 354, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1985, 1986, 489, 545, 429, 506, 422} \begin {gather*} \frac {\sqrt {c} (a c+2 b) \left (a c+a d x^2+b\right ) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 a^2 d^{3/2} \left (c+d x^2\right ) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}-\frac {x (a c+2 b) \left (a c+a d x^2+b\right )}{3 a^2 d \left (c+d x^2\right ) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}-\frac {c^{3/2} \left (a c+a d x^2+b\right ) F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 a d^{3/2} \left (c+d x^2\right ) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}+\frac {x \left (a c+a d x^2+b\right )}{3 a d \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[a + b/(c + d*x^2)],x]

[Out]

(x*(b + a*c + a*d*x^2))/(3*a*d*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]) - ((2*b + a*c)*x*(b + a*c + a*d*x^2))/(3
*a^2*d*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]) + (Sqrt[c]*(2*b + a*c)*(b + a*c + a*d*x^2)*EllipticE
[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(3*a^2*d^(3/2)*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*S
qrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]) - (c^(3/2)*(b + a*c + a*d*x^2)*EllipticF[ArcTan[(Sqrt[d]
*x)/Sqrt[c]], b/(b + a*c)])/(3*a*d^(3/2)*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*Sqrt[(c*(b + a*c +
a*d*x^2))/((b + a*c)*(c + d*x^2))])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 489

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(m + n*(p + q) + 1))), x] - Dist[e^n/(b*(m + n*(p +
q) + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[a*c*(m - n + 1) + (a*d*(m - n + 1) - n*q*(b
*c - a*d))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] &&
GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 1985

Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt {a+\frac {b}{c+d x^2}}} \, dx &=\frac {\sqrt {b+a \left (c+d x^2\right )} \int \frac {x^2 \sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}} \, dx}{\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=\frac {\sqrt {b+a \left (c+d x^2\right )} \int \frac {x^2 \sqrt {c+d x^2}}{\sqrt {b+a c+a d x^2}} \, dx}{\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=\frac {x \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 a d \sqrt {a+\frac {b}{c+d x^2}}}-\frac {\sqrt {b+a \left (c+d x^2\right )} \int \frac {c (b+a c)+(2 b+a c) d x^2}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{3 a d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=\frac {x \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 a d \sqrt {a+\frac {b}{c+d x^2}}}-\frac {\left ((2 b+a c) \sqrt {b+a \left (c+d x^2\right )}\right ) \int \frac {x^2}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{3 a \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}-\frac {\left (c (b+a c) \sqrt {b+a \left (c+d x^2\right )}\right ) \int \frac {1}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{3 a d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=\frac {x \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 a d \sqrt {a+\frac {b}{c+d x^2}}}-\frac {(2 b+a c) x \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 a^2 d \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}-\frac {c^{3/2} \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 a d^{3/2} \left (c+d x^2\right ) \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {a+\frac {b}{c+d x^2}}}+\frac {\left (c (2 b+a c) \sqrt {b+a \left (c+d x^2\right )}\right ) \int \frac {\sqrt {b+a c+a d x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 a^2 d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=\frac {x \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 a d \sqrt {a+\frac {b}{c+d x^2}}}-\frac {(2 b+a c) x \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 a^2 d \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}+\frac {\sqrt {c} (2 b+a c) \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 a^2 d^{3/2} \left (c+d x^2\right ) \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {a+\frac {b}{c+d x^2}}}-\frac {c^{3/2} \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 a d^{3/2} \left (c+d x^2\right ) \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {a+\frac {b}{c+d x^2}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 9.04, size = 253, normalized size = 0.71 \begin {gather*} \frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \left (\sqrt {\frac {a d}{b+a c}} x \left (c+d x^2\right ) \left (b+a c+a d x^2\right )+i c (2 b+a c) \sqrt {\frac {b+a c+a d x^2}{b+a c}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {a d}{b+a c}} x\right )|1+\frac {b}{a c}\right )-i b c \sqrt {\frac {b+a c+a d x^2}{b+a c}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {a d}{b+a c}} x\right )|1+\frac {b}{a c}\right )\right )}{3 a d \sqrt {\frac {a d}{b+a c}} \left (b+a \left (c+d x^2\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/Sqrt[a + b/(c + d*x^2)],x]

[Out]

(Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*(Sqrt[(a*d)/(b + a*c)]*x*(c + d*x^2)*(b + a*c + a*d*x^2) + I*c*(2*b + a
*c)*Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[(a*d)/(b + a*c)]*x], 1 +
b/(a*c)] - I*b*c*Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[(a*d)/(b + a
*c)]*x], 1 + b/(a*c)]))/(3*a*d*Sqrt[(a*d)/(b + a*c)]*(b + a*(c + d*x^2)))

________________________________________________________________________________________

Maple [A]
time = 0.05, size = 409, normalized size = 1.16

method result size
default \(\frac {\left (\sqrt {-\frac {a d}{a c +b}}\, a \,d^{2} x^{5}+2 \sqrt {-\frac {a d}{a c +b}}\, a c d \,x^{3}+\sqrt {-\frac {a d}{a c +b}}\, b d \,x^{3}-\sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a \,c^{2}+\sqrt {-\frac {a d}{a c +b}}\, a \,c^{2} x +\sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) b c -2 \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) b c +\sqrt {-\frac {a d}{a c +b}}\, b c x \right ) \left (d \,x^{2}+c \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{3 d \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {-\frac {a d}{a c +b}}\, a \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}\) \(409\)
risch \(\frac {x \left (a d \,x^{2}+a c +b \right )}{3 a d \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}-\frac {\left (-\frac {2 \left (a c d +2 b d \right ) \left (c^{2} a +b c \right ) \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )-\EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \left (2 a c d +2 b d \right )}+\frac {c^{2} a \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}+\frac {b c \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}{3 d a \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right )}\) \(531\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a+b/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*((-a*d/(a*c+b))^(1/2)*a*d^2*x^5+2*(-a*d/(a*c+b))^(1/2)*a*c*d*x^3+(-a*d/(a*c+b))^(1/2)*b*d*x^3-((a*d*x^2+a*
c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))*a*c^2+(-a*d/(a*c
+b))^(1/2)*a*c^2*x+((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-a*d/(a*c+b))^(1/2),((a*c+
b)/a/c)^(1/2))*b*c-2*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-a*d/(a*c+b))^(1/2),((a*
c+b)/a/c)^(1/2))*b*c+(-a*d/(a*c+b))^(1/2)*b*c*x)*(d*x^2+c)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/d/(a*d^2*x^4+2*a*
c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)/(-a*d/(a*c+b))^(1/2)/a/((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/sqrt(a + b/(d*x^2 + c)), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2}}{\sqrt {\frac {a c + a d x^{2} + b}{c + d x^{2}}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(a+b/(d*x**2+c))**(1/2),x)

[Out]

Integral(x**2/sqrt((a*c + a*d*x**2 + b)/(c + d*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

integrate(x^2/sqrt(a + b/(d*x^2 + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2}{\sqrt {a+\frac {b}{d\,x^2+c}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a + b/(c + d*x^2))^(1/2),x)

[Out]

int(x^2/(a + b/(c + d*x^2))^(1/2), x)

________________________________________________________________________________________