3.4.54 \(\int \frac {1}{x^4 \sqrt {a+\frac {b}{c+d x^2}}} \, dx\) [354]

Optimal. Leaf size=435 \[ \frac {-b-a c-a d x^2}{3 (b+a c) x^3 \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}-\frac {(b-a c) d \left (b+a c+a d x^2\right )}{3 c (b+a c)^2 x \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}+\frac {(b-a c) d^2 x \left (b+a c+a d x^2\right )}{3 c (b+a c)^2 \left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}-\frac {(b-a c) d^{3/2} \left (b+a c+a d x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 \sqrt {c} (b+a c)^2 \left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}}-\frac {a \sqrt {c} d^{3/2} \left (b+a c+a d x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 (b+a c)^2 \left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}} \]

[Out]

1/3*(-a*d*x^2-a*c-b)/(a*c+b)/x^3/((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)-1/3*(-a*c+b)*d*(a*d*x^2+a*c+b)/c/(a*c+b)^2/
x/((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)+1/3*(-a*c+b)*d^2*x*(a*d*x^2+a*c+b)/c/(a*c+b)^2/(d*x^2+c)/((a*d*x^2+a*c+b)/
(d*x^2+c))^(1/2)-1/3*(-a*c+b)*d^(3/2)*(a*d*x^2+a*c+b)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1
/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(b/(a*c+b))^(1/2))/(a*c+b)^2/(d*x^2+c)/c^(1/2)/((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)
/(c*(a*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)-1/3*a*d^(3/2)*(a*d*x^2+a*c+b)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(
1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(b/(a*c+b))^(1/2))*c^(1/2)/(a*c+b)^2/(d*x^2+c)/((a*d*x^2+a*
c+b)/(d*x^2+c))^(1/2)/(c*(a*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.29, antiderivative size = 431, normalized size of antiderivative = 0.99, number of steps used = 8, number of rules used = 8, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {1985, 1986, 486, 597, 545, 429, 506, 422} \begin {gather*} -\frac {a \sqrt {c} d^{3/2} \left (a c+a d x^2+b\right ) F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 (a c+b)^2 \left (c+d x^2\right ) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}-\frac {d^{3/2} (b-a c) \left (a c+a d x^2+b\right ) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 \sqrt {c} (a c+b)^2 \left (c+d x^2\right ) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}+\frac {d^2 x (b-a c) \left (a c+a d x^2+b\right )}{3 c (a c+b)^2 \left (c+d x^2\right ) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}-\frac {d (b-a c) \left (a c+a d x^2+b\right )}{3 c x (a c+b)^2 \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}-\frac {a c+a d x^2+b}{3 x^3 (a c+b) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^4*Sqrt[a + b/(c + d*x^2)]),x]

[Out]

-1/3*(b + a*c + a*d*x^2)/((b + a*c)*x^3*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]) - ((b - a*c)*d*(b + a*c + a*d*x
^2))/(3*c*(b + a*c)^2*x*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]) + ((b - a*c)*d^2*x*(b + a*c + a*d*x^2))/(3*c*(b
 + a*c)^2*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]) - ((b - a*c)*d^(3/2)*(b + a*c + a*d*x^2)*Elliptic
E[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(3*Sqrt[c]*(b + a*c)^2*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c +
d*x^2)]*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]) - (a*Sqrt[c]*d^(3/2)*(b + a*c + a*d*x^2)*Ellipt
icF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(3*(b + a*c)^2*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)
]*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 486

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 1985

Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rubi steps

\begin {align*} \int \frac {1}{x^4 \sqrt {a+\frac {b}{c+d x^2}}} \, dx &=\frac {\sqrt {b+a \left (c+d x^2\right )} \int \frac {\sqrt {c+d x^2}}{x^4 \sqrt {b+a \left (c+d x^2\right )}} \, dx}{\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=\frac {\sqrt {b+a \left (c+d x^2\right )} \int \frac {\sqrt {c+d x^2}}{x^4 \sqrt {b+a c+a d x^2}} \, dx}{\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=-\frac {\sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 (b+a c) x^3 \sqrt {a+\frac {b}{c+d x^2}}}+\frac {\sqrt {b+a \left (c+d x^2\right )} \int \frac {(b-a c) d-a d^2 x^2}{x^2 \sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{3 (b+a c) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=-\frac {\sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 (b+a c) x^3 \sqrt {a+\frac {b}{c+d x^2}}}-\frac {(b-a c) d \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 c (b+a c)^2 x \sqrt {a+\frac {b}{c+d x^2}}}-\frac {\sqrt {b+a \left (c+d x^2\right )} \int \frac {a c (b+a c) d^2-a (b-a c) d^3 x^2}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{3 c (b+a c)^2 \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=-\frac {\sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 (b+a c) x^3 \sqrt {a+\frac {b}{c+d x^2}}}-\frac {(b-a c) d \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 c (b+a c)^2 x \sqrt {a+\frac {b}{c+d x^2}}}-\frac {\left (a d^2 \sqrt {b+a \left (c+d x^2\right )}\right ) \int \frac {1}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{3 (b+a c) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}+\frac {\left (a (b-a c) d^3 \sqrt {b+a \left (c+d x^2\right )}\right ) \int \frac {x^2}{\sqrt {c+d x^2} \sqrt {b+a c+a d x^2}} \, dx}{3 c (b+a c)^2 \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=-\frac {\sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 (b+a c) x^3 \sqrt {a+\frac {b}{c+d x^2}}}-\frac {(b-a c) d \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 c (b+a c)^2 x \sqrt {a+\frac {b}{c+d x^2}}}+\frac {(b-a c) d^2 x \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 c (b+a c)^2 \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}-\frac {a \sqrt {c} d^{3/2} \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 (b+a c)^2 \left (c+d x^2\right ) \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {a+\frac {b}{c+d x^2}}}-\frac {\left ((b-a c) d^2 \sqrt {b+a \left (c+d x^2\right )}\right ) \int \frac {\sqrt {b+a c+a d x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 (b+a c)^2 \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=-\frac {\sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 (b+a c) x^3 \sqrt {a+\frac {b}{c+d x^2}}}-\frac {(b-a c) d \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 c (b+a c)^2 x \sqrt {a+\frac {b}{c+d x^2}}}+\frac {(b-a c) d^2 x \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )}}{3 c (b+a c)^2 \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}-\frac {(b-a c) d^{3/2} \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 \sqrt {c} (b+a c)^2 \left (c+d x^2\right ) \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {a+\frac {b}{c+d x^2}}}-\frac {a \sqrt {c} d^{3/2} \sqrt {b+a c+a d x^2} \sqrt {b+a \left (c+d x^2\right )} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{3 (b+a c)^2 \left (c+d x^2\right ) \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt {a+\frac {b}{c+d x^2}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.63, size = 314, normalized size = 0.72 \begin {gather*} \frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \left (-\sqrt {\frac {a d}{b+a c}} \left (c+d x^2\right ) \left (b^2 \left (c+d x^2\right )+a^2 c \left (c^2-d^2 x^4\right )+a b \left (2 c^2+c d x^2+d^2 x^4\right )\right )+i a c (-b+a c) d^2 x^3 \sqrt {\frac {b+a c+a d x^2}{b+a c}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {a d}{b+a c}} x\right )|1+\frac {b}{a c}\right )+2 i a b c d^2 x^3 \sqrt {\frac {b+a c+a d x^2}{b+a c}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {a d}{b+a c}} x\right )|1+\frac {b}{a c}\right )\right )}{3 c (b+a c)^2 \sqrt {\frac {a d}{b+a c}} x^3 \left (b+a \left (c+d x^2\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*Sqrt[a + b/(c + d*x^2)]),x]

[Out]

(Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*(-(Sqrt[(a*d)/(b + a*c)]*(c + d*x^2)*(b^2*(c + d*x^2) + a^2*c*(c^2 - d^
2*x^4) + a*b*(2*c^2 + c*d*x^2 + d^2*x^4))) + I*a*c*(-b + a*c)*d^2*x^3*Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*Sqrt
[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[(a*d)/(b + a*c)]*x], 1 + b/(a*c)] + (2*I)*a*b*c*d^2*x^3*Sqrt[(b + a*c
 + a*d*x^2)/(b + a*c)]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[(a*d)/(b + a*c)]*x], 1 + b/(a*c)]))/(3*c*(
b + a*c)^2*Sqrt[(a*d)/(b + a*c)]*x^3*(b + a*(c + d*x^2)))

________________________________________________________________________________________

Maple [A]
time = 0.05, size = 593, normalized size = 1.36

method result size
risch \(-\frac {\left (a d \,x^{2}+a c +b \right ) \left (-a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c \right )}{3 \left (a c +b \right )^{2} x^{3} c \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}-\frac {d^{2} a \left (-\frac {2 \left (a c d -b d \right ) \left (c^{2} a +b c \right ) \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )-\EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \left (2 a c d +2 b d \right )}+\frac {c^{2} a \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}+\frac {b c \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}{3 c \left (a c +b \right )^{2} \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right )}\) \(568\)
default \(-\frac {\left (-\sqrt {-\frac {a d}{a c +b}}\, a^{2} c \,d^{3} x^{6}+\sqrt {-\frac {a d}{a c +b}}\, a b \,d^{3} x^{6}+\sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a^{2} c^{2} d^{2} x^{3}-\sqrt {-\frac {a d}{a c +b}}\, a^{2} c^{2} d^{2} x^{4}+2 \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a b c \,d^{2} x^{3}-\sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a b c \,d^{2} x^{3}+2 \sqrt {-\frac {a d}{a c +b}}\, a b c \,d^{2} x^{4}+\sqrt {-\frac {a d}{a c +b}}\, a^{2} c^{3} d \,x^{2}+\sqrt {-\frac {a d}{a c +b}}\, b^{2} d^{2} x^{4}+3 \sqrt {-\frac {a d}{a c +b}}\, a b \,c^{2} d \,x^{2}+\sqrt {-\frac {a d}{a c +b}}\, a^{2} c^{4}+2 \sqrt {-\frac {a d}{a c +b}}\, b^{2} c d \,x^{2}+2 \sqrt {-\frac {a d}{a c +b}}\, a b \,c^{3}+\sqrt {-\frac {a d}{a c +b}}\, b^{2} c^{2}\right ) \left (d \,x^{2}+c \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{3 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {-\frac {a d}{a c +b}}\, c \,x^{3} \left (a c +b \right )^{2} \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}\) \(593\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(a+b/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*(-(-a*d/(a*c+b))^(1/2)*a^2*c*d^3*x^6+(-a*d/(a*c+b))^(1/2)*a*b*d^3*x^6+((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d
*x^2+c)/c)^(1/2)*EllipticE(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))*a^2*c^2*d^2*x^3-(-a*d/(a*c+b))^(1/2)*a^
2*c^2*d^2*x^4+2*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/
a/c)^(1/2))*a*b*c*d^2*x^3-((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-a*d/(a*c+b))^(1/2)
,((a*c+b)/a/c)^(1/2))*a*b*c*d^2*x^3+2*(-a*d/(a*c+b))^(1/2)*a*b*c*d^2*x^4+(-a*d/(a*c+b))^(1/2)*a^2*c^3*d*x^2+(-
a*d/(a*c+b))^(1/2)*b^2*d^2*x^4+3*(-a*d/(a*c+b))^(1/2)*a*b*c^2*d*x^2+(-a*d/(a*c+b))^(1/2)*a^2*c^4+2*(-a*d/(a*c+
b))^(1/2)*b^2*c*d*x^2+2*(-a*d/(a*c+b))^(1/2)*a*b*c^3+(-a*d/(a*c+b))^(1/2)*b^2*c^2)*(d*x^2+c)*((a*d*x^2+a*c+b)/
(d*x^2+c))^(1/2)/(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)/(-a*d/(a*c+b))^(1/2)/c/x^3/(a*c+b)^2/((d*x^2+
c)*(a*d*x^2+a*c+b))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(a+b/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a + b/(d*x^2 + c))*x^4), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(a+b/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{4} \sqrt {\frac {a c + a d x^{2} + b}{c + d x^{2}}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(a+b/(d*x**2+c))**(1/2),x)

[Out]

Integral(1/(x**4*sqrt((a*c + a*d*x**2 + b)/(c + d*x**2))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(a+b/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a + b/(d*x^2 + c))*x^4), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^4\,\sqrt {a+\frac {b}{d\,x^2+c}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*(a + b/(c + d*x^2))^(1/2)),x)

[Out]

int(1/(x^4*(a + b/(c + d*x^2))^(1/2)), x)

________________________________________________________________________________________