3.4.87 \(\int \frac {\sqrt {a x^2}}{\sqrt {1+x^3}} \, dx\) [387]

Optimal. Leaf size=260 \[ \frac {2 \sqrt {a x^2} \sqrt {1+x^3}}{x \left (1+\sqrt {3}+x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt {a x^2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{x \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {2 \sqrt {2} \sqrt {a x^2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} x \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \]

[Out]

2*(a*x^2)^(1/2)*(x^3+1)^(1/2)/x/(1+x+3^(1/2))+2/3*(1+x)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*2
^(1/2)*(a*x^2)^(1/2)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/x/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)-3
^(1/4)*(1+x)*EllipticE((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*(a*x^2)^(1/2)*(1/2*6^(1/2)-1/2*2^(1/2))*((x^
2-x+1)/(1+x+3^(1/2))^2)^(1/2)/x/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 260, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {15, 309, 224, 1891} \begin {gather*} \frac {2 \sqrt {2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {a x^2} F\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} x \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {a x^2} E\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{x \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}+\frac {2 \sqrt {x^3+1} \sqrt {a x^2}}{x \left (x+\sqrt {3}+1\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*x^2]/Sqrt[1 + x^3],x]

[Out]

(2*Sqrt[a*x^2]*Sqrt[1 + x^3])/(x*(1 + Sqrt[3] + x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*Sqrt[a*x^2]*(1 + x)*Sqrt[(1 -
 x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(x*Sqrt
[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) + (2*Sqrt[2]*Sqrt[a*x^2]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3]
+ x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*x*Sqrt[(1 + x)/(1 + S
qrt[3] + x)^2]*Sqrt[1 + x^3])

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[a^IntPart[m]*((a*x^n)^FracPart[m]/x^(n*FracPart[m])), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 309

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(-(
1 - Sqrt[3]))*(s/r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x]
, x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1891

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 - Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 - Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x
] - Simp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1
+ Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a x^2}}{\sqrt {1+x^3}} \, dx &=\frac {\sqrt {a x^2} \int \frac {x}{\sqrt {1+x^3}} \, dx}{x}\\ &=\frac {\sqrt {a x^2} \int \frac {1-\sqrt {3}+x}{\sqrt {1+x^3}} \, dx}{x}+\frac {\left (\sqrt {2 \left (2-\sqrt {3}\right )} \sqrt {a x^2}\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx}{x}\\ &=\frac {2 \sqrt {a x^2} \sqrt {1+x^3}}{x \left (1+\sqrt {3}+x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt {a x^2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{x \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {2 \sqrt {2} \sqrt {a x^2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} x \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 29, normalized size = 0.11 \begin {gather*} \frac {1}{2} x \sqrt {a x^2} \, _2F_1\left (\frac {1}{2},\frac {2}{3};\frac {5}{3};-x^3\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*x^2]/Sqrt[1 + x^3],x]

[Out]

(x*Sqrt[a*x^2]*Hypergeometric2F1[1/2, 2/3, 5/3, -x^3])/2

________________________________________________________________________________________

Maple [A]
time = 0.28, size = 270, normalized size = 1.04

method result size
meijerg \(\frac {\sqrt {a \,x^{2}}\, x \hypergeom \left (\left [\frac {1}{2}, \frac {2}{3}\right ], \left [\frac {5}{3}\right ], -x^{3}\right )}{2}\) \(22\)
default \(\frac {\sqrt {a \,x^{2}}\, \left (-3+i \sqrt {3}\right ) \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, \left (i \EllipticE \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) \sqrt {3}-i \EllipticF \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) \sqrt {3}+3 \EllipticE \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right )-\EllipticF \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right )\right )}{2 x \sqrt {x^{3}+1}}\) \(270\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^2)^(1/2)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*(a*x^2)^(1/2)*(-3+I*3^(1/2))*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3
^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*(I*EllipticE((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3
))^(1/2))*3^(1/2)-I*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*3^(1/2)+3
*EllipticE((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-EllipticF((-2*(1+x)/(-3+I*3^
(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2)))/x/(x^3+1)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2)^(1/2)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*x^2)/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.08, size = 19, normalized size = 0.07 \begin {gather*} -\frac {2 \, \sqrt {a x^{2}} {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2)^(1/2)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

-2*sqrt(a*x^2)*weierstrassZeta(0, -4, weierstrassPInverse(0, -4, x))/x

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a x^{2}}}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x**2)**(1/2)/(x**3+1)**(1/2),x)

[Out]

Integral(sqrt(a*x**2)/sqrt((x + 1)*(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2)^(1/2)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*x^2)/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {a\,x^2}}{\sqrt {x^3+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^2)^(1/2)/(x^3 + 1)^(1/2),x)

[Out]

int((a*x^2)^(1/2)/(x^3 + 1)^(1/2), x)

________________________________________________________________________________________