3.5.21 \(\int x (\sqrt {1-x}+\sqrt {1+x})^2 \, dx\) [421]

Optimal. Leaf size=19 \[ x^2-\frac {2}{3} \left (1-x^2\right )^{3/2} \]

[Out]

x^2-2/3*(-x^2+1)^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {6874, 267} \begin {gather*} x^2-\frac {2}{3} \left (1-x^2\right )^{3/2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*(Sqrt[1 - x] + Sqrt[1 + x])^2,x]

[Out]

x^2 - (2*(1 - x^2)^(3/2))/3

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int x \left (\sqrt {1-x}+\sqrt {1+x}\right )^2 \, dx &=\int \left (2 x+2 x \sqrt {1-x^2}\right ) \, dx\\ &=x^2+2 \int x \sqrt {1-x^2} \, dx\\ &=x^2-\frac {2}{3} \left (1-x^2\right )^{3/2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 25, normalized size = 1.32 \begin {gather*} \frac {1}{3} (-1+x) (1+x) \left (3+2 \sqrt {1-x^2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*(Sqrt[1 - x] + Sqrt[1 + x])^2,x]

[Out]

((-1 + x)*(1 + x)*(3 + 2*Sqrt[1 - x^2]))/3

________________________________________________________________________________________

Maple [A]
time = 0.21, size = 24, normalized size = 1.26

method result size
default \(x^{2}+\frac {2 \sqrt {1-x}\, \sqrt {1+x}\, \left (x^{2}-1\right )}{3}\) \(24\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*((1-x)^(1/2)+(1+x)^(1/2))^2,x,method=_RETURNVERBOSE)

[Out]

x^2+2/3*(1-x)^(1/2)*(1+x)^(1/2)*(x^2-1)

________________________________________________________________________________________

Maxima [A]
time = 0.48, size = 15, normalized size = 0.79 \begin {gather*} x^{2} - \frac {2}{3} \, {\left (-x^{2} + 1\right )}^{\frac {3}{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*((1-x)^(1/2)+(1+x)^(1/2))^2,x, algorithm="maxima")

[Out]

x^2 - 2/3*(-x^2 + 1)^(3/2)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 23, normalized size = 1.21 \begin {gather*} x^{2} + \frac {2}{3} \, {\left (x^{2} - 1\right )} \sqrt {x + 1} \sqrt {-x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*((1-x)^(1/2)+(1+x)^(1/2))^2,x, algorithm="fricas")

[Out]

x^2 + 2/3*(x^2 - 1)*sqrt(x + 1)*sqrt(-x + 1)

________________________________________________________________________________________

Sympy [A]
time = 53.90, size = 144, normalized size = 7.58 \begin {gather*} - \frac {x^{3}}{3} - x + \frac {\left (x + 1\right )^{3}}{3} - 4 \left (\begin {cases} \frac {x \sqrt {1 - x} \sqrt {x + 1}}{4} + \frac {\operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )}}{2} & \text {for}\: \sqrt {x + 1} > - \sqrt {2} \wedge \sqrt {x + 1} < \sqrt {2} \end {cases}\right ) + 4 \left (\begin {cases} \frac {x \sqrt {1 - x} \sqrt {x + 1}}{4} - \frac {\left (1 - x\right )^{\frac {3}{2}} \left (x + 1\right )^{\frac {3}{2}}}{6} + \frac {\operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )}}{2} & \text {for}\: \sqrt {x + 1} > - \sqrt {2} \wedge \sqrt {x + 1} < \sqrt {2} \end {cases}\right ) - 1 \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*((1-x)**(1/2)+(1+x)**(1/2))**2,x)

[Out]

-x**3/3 - x + (x + 1)**3/3 - 4*Piecewise((x*sqrt(1 - x)*sqrt(x + 1)/4 + asin(sqrt(2)*sqrt(x + 1)/2)/2, (sqrt(x
 + 1) < sqrt(2)) & (sqrt(x + 1) > -sqrt(2)))) + 4*Piecewise((x*sqrt(1 - x)*sqrt(x + 1)/4 - (1 - x)**(3/2)*(x +
 1)**(3/2)/6 + asin(sqrt(2)*sqrt(x + 1)/2)/2, (sqrt(x + 1) < sqrt(2)) & (sqrt(x + 1) > -sqrt(2)))) - 1

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 51 vs. \(2 (15) = 30\).
time = 4.01, size = 51, normalized size = 2.68 \begin {gather*} {\left (x + 1\right )}^{2} + \frac {1}{3} \, {\left ({\left (2 \, x - 5\right )} {\left (x + 1\right )} + 9\right )} \sqrt {x + 1} \sqrt {-x + 1} + \sqrt {x + 1} {\left (x - 2\right )} \sqrt {-x + 1} - 2 \, x - 2 \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*((1-x)^(1/2)+(1+x)^(1/2))^2,x, algorithm="giac")

[Out]

(x + 1)^2 + 1/3*((2*x - 5)*(x + 1) + 9)*sqrt(x + 1)*sqrt(-x + 1) + sqrt(x + 1)*(x - 2)*sqrt(-x + 1) - 2*x - 2

________________________________________________________________________________________

Mupad [B]
time = 2.98, size = 33, normalized size = 1.74 \begin {gather*} x^2-\frac {\sqrt {1-x}\,\left (-\frac {2\,x^3}{3}-\frac {2\,x^2}{3}+\frac {2\,x}{3}+\frac {2}{3}\right )}{\sqrt {x+1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*((x + 1)^(1/2) + (1 - x)^(1/2))^2,x)

[Out]

x^2 - ((1 - x)^(1/2)*((2*x)/3 - (2*x^2)/3 - (2*x^3)/3 + 2/3))/(x + 1)^(1/2)

________________________________________________________________________________________